高数习题10.3

  1. 判断下列级数是否收敛?条件收敛还是绝对收敛?
    (1) 1 2 2 − 1 4 2 + 1 6 2 + ⋯ + ( − 1 ) n − 1 1 ( 2 n ) 2 + ⋯   ; \frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{6^2}+\cdots+(-1)^{n-1}\frac{1}{(2n)^2}+\cdots; 221421+621++(1)n1(2n)21+;
    (2) 1 − 1 3 p + 1 5 p + ⋯ + ( − 1 ) n + 1 1 ( 2 n − 1 ) p + ⋯   ; 1-\frac{1}{3^p}+\frac{1}{5^p}+\cdots+(-1)^{n+1}\frac{1}{(2n-1)^p}+\cdots; 13p1+5p1++(1)n+1(2n1)p1+;
    (3) 1 2 l n 2 − 1 3 l n 3 + 1 4 l n 4 + ⋯ + ( − 1 ) n − 1 1 ( n + 1 ) l n ( n + 1 ) + ⋯   ; \frac{1}{2ln2}-\frac{1}{3ln3}+\frac{1}{4ln4}+\cdots+(-1)^{n-1}\frac{1}{(n+1)ln(n+1)}+\cdots; 2ln213ln31+4ln41++(1)n1(n+1)ln(n+1)1+;
    (4) ∑ n = 1 ∞ ( − 1 ) n n − 1 n ; \sum_{n=1}^\infty(-1)^n\frac{\sqrt{n}-1}{n}; n=1(1)nnn 1;
    (5) 3 1 ⋅ 2 − 5 2 ⋅ 3 + ⋯ + ( − 1 ) n − 1 2 n + 1 n ( n + 1 ) + ⋯   ; \frac{3}{1\cdot2}-\frac{5}{2\cdot3}+\cdots+(-1)^{n-1}\frac{2n+1}{n(n+1)}+\cdots; 123235++(1)n1n(n+1)2n+1+;
    (6) ∑ n = 1 ∞ ( − 1 ) n + 1 n ! 3 n 2 ; \sum_{n=1}^\infty(-1)^{n+1}\frac{n!}{3^{n^2}}; n=1(1)n+13n2n!;
    (7) 1 2 s i n π 2 − 1 3 s i n π 3 + 1 4 s i n π 4 − ⋯   ; \frac{1}{2}sin\frac{\pi}{2}-\frac{1}{3}sin\frac{\pi}{3}+\frac{1}{4}sin\frac{\pi}{4}-\cdots; 21sin2π31sin3π+41sin4π;
    (8) ∑ n = 1 ∞ ( − 1 ) n + 1 t a n φ n ( − π 2 < φ < π 2 ) ; \sum_{n=1}^\infty(-1)^{n+1}tan\frac{\varphi}{n}(-\frac{\pi}{2}<\varphi<\frac{\pi}{2}); n=1(1)n+1tannφ(2π<φ<2π);
    (9) ∑ n = 2 ∞ ( − 1 ) n + 1 n t ( l n n ) s ( t > 0 , s > 0 ) ; \sum_{n=2}^\infty\frac{(-1)^{n+1}}{n^t(lnn)^s}(t>0,s>0); n=2nt(lnn)s(1)n+1(t>0,s>0);
    (10) ∑ n = 1 ∞ s i n ( π n 2 + 1 ) ; \sum_{n=1}^\infty sin(\pi\sqrt{n^2+1}); n=1sin(πn2+1 );
    (11) ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋯ ( 2 n − 1 ) 2 ⋅ 4 ⋯ ( 2 n ) ; \sum_{n=1}^\infty (-1)^n\frac{1\cdot3\cdots(2n-1)}{2\cdot4\cdots(2n)}; n=1(1)n24(2n)13(2n1);
    解:
    (1) 因为 ∑ n = 1 ∞ ∣ ( − 1 ) n − 1 ( 2 n ) 2 ∣ = ∑ n = 1 ∞ 1 ( 2 n ) 2 \sum_{n=1}^\infty|\frac{(-1)^{n-1}}{(2n)^2}|=\sum_{n=1}^\infty\frac{1}{(2n)^2} n=1(2n)2(1)n1=n=1(2n)21收敛,所以级数 ∑ n = 1 ∞ ( − 1 ) n − 1 ( 2 n ) 2 \sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n)^2} n=1(2n)2(1)n1绝对收敛
    (2) 因为 u n ≥ u n + 1 u_n\geq u_{n+1} unun+1 lim ⁡ n → ∞ u n = 0 \lim_{n\to\infty}u_n=0 limnun=0,所以级数 ∑ n = 1 ∞ ( − 1 ) n + 1 1 ( 2 n − 1 ) p \sum_{n=1}^\infty(-1)^{n+1}\frac{1}{(2n-1)^p} n=1(1)n+1(2n1)p1收敛,而级数 ∑ n = 1 ∞ ∣ ( − 1 ) n + 1 ( 2 n − 1 ) p ∣ = ∑ n = 1 ∞ 1 ( 2 n − 1 ) p \sum_{n=1}^\infty|\frac{(-1)^{n+1}}{(2n-1)^p}|=\sum_{n=1}^\infty\frac{1}{(2n-1)^p} n=1(2n1)p(1)n+1=n=1(2n1)p1,当 p > 1 p>1 p>1时收敛,当 0 < p ≤ 1 0<p\leq1 0<p1时发散。
    所以当 p > 1 p>1 p>1时,级数 ∑ n = 1 ∞ ( − 1 ) n + 1 1 ( 2 n − 1 ) p \sum_{n=1}^\infty(-1)^{n+1}\frac{1}{(2n-1)^p} n=1(1)n+1(2n1)p1绝对收敛,当 0 < p ≤ 1 0<p\leq1 0<p1时,级数 ∑ n = 1 ∞ ( − 1 ) n + 1 1 ( 2 n − 1 ) p \sum_{n=1}^\infty(-1)^{n+1}\frac{1}{(2n-1)^p} n=1(1)n+1(2n1)p1条件收敛。
    (3) 因为 u n ≥ u n + 1 u_n\geq u_{n+1} unun+1 lim ⁡ n → ∞ u n = 0 \lim_{n\to\infty}u_n=0 limnun=0,所以级数 ∑ n = 1 ∞ ( − 1 ) n − 1 1 ( n + 1 ) l n ( n + 1 ) \sum_{n=1}^\infty(-1)^{n-1}\frac{1}{(n+1)ln(n+1)} n=1(1)n1(n+1)ln(n+1)1收敛,而因为 ∫ 2 A 1 x l n x d x = l n ∣ l n x ∣ ∣ 2 A = l n ∣ l n A ∣ − l n ∣ l n 2 ∣ → ∞ \int_2^A\frac{1}{xlnx}dx=ln|lnx||_2^A=ln|lnA|-ln|ln2|\to\infty 2Axlnx1dx=lnlnx2A=lnlnAlnln2,所以级数 ∑ n = 2 ∞ 1 n l n n \sum_{n=2}^\infty\frac{1}{nlnn} n=2nlnn1发散,所以级数 ∑ n = 1 ∞ ( − 1 ) n − 1 1 ( n + 1 ) l n ( n + 1 ) \sum_{n=1}^\infty(-1)^{n-1}\frac{1}{(n+1)ln(n+1)} n=1(1)n1(n+1)ln(n+1)1条件收敛
    (4) 因为 ∑ n = 1 ∞ ( − 1 ) n n − 1 n = ∑ n = 1 ∞ ( − 1 ) n 1 n − ∑ n = 1 ∞ ( − 1 ) n 1 n \sum_{n=1}^\infty(-1)^n\frac{\sqrt{n}-1}{n}=\sum_{n=1}^\infty(-1)^n\frac{1}{\sqrt{n}}-\sum_{n=1}^\infty(-1)^n\frac{1}{n} n=1(1)nnn 1=n=1(1)nn 1n=1(1)nn1,因为交错级数 ∑ n = 1 ∞ ( − 1 ) n 1 n \sum_{n=1}^\infty(-1)^n\frac{1}{\sqrt{n}} n=1(1)nn 1 ∑ n = 1 ∞ ( − 1 ) n 1 n \sum_{n=1}^\infty(-1)^n\frac{1}{n} n=1(1)nn1都收敛,所以级数 ∑ n = 1 ∞ ( − 1 ) n n − 1 n \sum_{n=1}^\infty(-1)^n\frac{\sqrt{n}-1}{n} n=1(1)nnn 1也收敛。因为 n − 1 n / 1 n → 1 \frac{\sqrt{n}-1}{n}/\frac{1}{\sqrt{n}}\to1 nn 1/n 11,并且级数 ∑ n = 1 ∞ 1 n \sum_{n=1}^\infty\frac{1}{\sqrt{n}} n=1n 1发散,所以级数 ∑ n = 1 ∞ n − 1 n \sum_{n=1}^\infty\frac{\sqrt{n}-1}{n} n=1nn 1发散,所以级数 ∑ n = 1 ∞ ( − 1 ) n n − 1 n \sum_{n=1}^\infty(-1)^n\frac{\sqrt{n}-1}{n} n=1(1)nnn 1条件收敛。
    (5) 因为 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n + 1 n ( n + 1 ) = ∑ n = 1 ∞ ( − 1 ) n − 1 1 n + ∑ n = 1 ∞ ( − 1 ) n − 1 1 n + 1 \sum_{n=1}^\infty(-1)^{n-1}\frac{2n+1}{n(n+1)}=\sum_{n=1}^\infty(-1)^{n-1}\frac{1}{n}+\sum_{n=1}^\infty(-1)^{n-1}\frac{1}{n+1} n=1(1)n1n(n+1)2n+1=n=1(1)n1n1+n=1(1)n1n+11,因为交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 1 n \sum_{n=1}^\infty(-1)^{n-1}\frac{1}{n} n=1(1)n1n1 ∑ n = 1 ∞ ( − 1 ) n − 1 1 n + 1 \sum_{n=1}^\infty(-1)^{n-1}\frac{1}{n+1} n=1(1)n1n+11都收敛,所以级数 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n + 1 n ( n + 1 ) \sum_{n=1}^\infty(-1)^{n-1}\frac{2n+1}{n(n+1)} n=1(1)n1n(n+1)2n+1也收敛。因为 2 n + 1 n ( n + 1 ) / 1 n → 2 \frac{2n+1}{n(n+1)}/\frac{1}{n}\to2 n(n+1)2n+1/n12,并且级数 ∑ n = 1 ∞ 1 n \sum_{n=1}^\infty\frac{1}{n} n=1n1发散,所以级数 ∑ n = 1 ∞ 2 n + 1 n ( n + 1 ) \sum_{n=1}^\infty\frac{2n+1}{n(n+1)} n=1n(n+1)2n+1发散,所以级数 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n + 1 n ( n + 1 ) \sum_{n=1}^\infty(-1)^{n-1}\frac{2n+1}{n(n+1)} n=1(1)n1n(n+1)2n+1条件收敛。
    (6) u n + 1 u n = ( n + 1 ) ! 3 n 2 n ! 3 ( n + 1 ) 2 = n + 1 3 2 n + 1 → 0 \frac{u_{n+1}}{u_n}=\frac{(n+1)!3^{n^2}}{n!3^{(n+1)^2}}=\frac{n+1}{3^{2n+1}}\to0 unun+1=n!3(n+1)2(n+1)!3n2=32n+1n+10,所以级数 ∑ n = 1 ∞ n ! 3 n 2 \sum_{n=1}^\infty\frac{n!}{3^{n^2}} n=13n2n!收敛, ∑ n = 1 ∞ ( − 1 ) n + 1 n ! 3 n 2 \sum_{n=1}^\infty(-1)^{n+1}\frac{n!}{3^{n^2}} n=1(1)n+13n2n!绝对收敛。
    (7) 1 n s i n π n / 1 n 2 → π \frac{1}{n}sin\frac{\pi}{n}/\frac{1}{n^2}\to\pi n1sinnπ/n21π,因为级数 ∑ n = 2 ∞ 1 n 2 \sum_{n=2}^\infty\frac{1}{n^2} n=2n21,所以级数 ∑ n = 2 ∞ 1 n s i n π n \sum_{n=2}^\infty\frac{1}{n}sin\frac{\pi}{n} n=2n1sinnπ收敛, ∑ n = 2 ∞ ( − 1 ) n 1 n s i n π n \sum_{n=2}^\infty(-1)^n\frac{1}{n}sin\frac{\pi}{n} n=2(1)nn1sinnπ绝对收敛。
    (8) 当 φ = 0 \varphi=0 φ=0时,级数 ∑ n = 1 ∞ ( − 1 ) n + 1 t a n φ n \sum_{n=1}^\infty(-1)^{n+1}tan\frac{\varphi}{n} n=1(1)n+1tannφ显然绝对收敛。当 φ ≠ 0 \varphi\neq0 φ=0时,因为 ∣ t a n φ n ∣ |tan\frac{\varphi}{n}| tannφ单调趋向于0,所以级数 ∑ n = 1 ∞ ( − 1 ) n + 1 t a n φ n \sum_{n=1}^\infty(-1)^{n+1}tan\frac{\varphi}{n} n=1(1)n+1tannφ收敛。因为 ∣ t a n φ n ∣ / 1 n → ∣ φ ∣ |tan\frac{\varphi}{n}|/\frac{1}{n}\to|\varphi| tannφ/n1φ,并且级数 ∑ n = 1 ∞ 1 n \sum_{n=1}^\infty\frac{1}{n} n=1n1发散,所以级数 ∑ n = 1 ∞ ∣ t a n φ n ∣ \sum_{n=1}^\infty|tan\frac{\varphi}{n}| n=1tannφ发散,所以级数 ∑ n = 1 ∞ ( − 1 ) n + 1 t a n φ n \sum_{n=1}^\infty(-1)^{n+1}tan\frac{\varphi}{n} n=1(1)n+1tannφ条件收敛
    (9) 因为 1 n t ( l n n ) s \frac{1}{n^t(lnn)^s} nt(lnn)s1单调趋向于0,所以级数 ∑ n = 2 ∞ ( − 1 ) n + 1 n t ( l n n ) s \sum_{n=2}^\infty\frac{(-1)^{n+1}}{n^t(lnn)^s} n=2nt(lnn)s(1)n+1收敛
    t = 1 t=1 t=1时:
    s ≠ 1 s\neq1 s=1时, ∫ 2 A 1 x ( l n x ) s d x = ( l n x ) 1 − s 1 − s ∣ 2 A = ( l n A ) 1 − s − ( l n 2 ) 1 − s 1 − s \int_2^A\frac{1}{x(lnx)^s}dx=\frac{(lnx)^{1-s}}{1-s}|_2^A=\frac{(lnA)^{1-s}-(ln2)^{1-s}}{1-s} 2Ax(lnx)s1dx=1s(lnx)1s2A=1s(lnA)1s(ln2)1s
    0 < s < 1 0<s<1 0<s<1时, ( l n A ) 1 − s − ( l n 2 ) 1 − s 1 − s → ∞ \frac{(lnA)^{1-s}-(ln2)^{1-s}}{1-s}\to\infty 1s(lnA)1s(ln2)1s,此时级数 ∑ n = 2 ∞ 1 n t ( l n n ) s \sum_{n=2}^{\infty}\frac{1}{n^t(lnn)^s} n=2nt(lnn)s1发散
    s > 1 s>1 s>1时, ( l n A ) 1 − s − ( l n 2 ) 1 − s 1 − s → 0 \frac{(lnA)^{1-s}-(ln2)^{1-s}}{1-s}\to0 1s(lnA)1s(ln2)1s0,此时级数 ∑ n = 2 ∞ 1 n t ( l n n ) s \sum_{n=2}^{\infty}\frac{1}{n^t(lnn)^s} n=2nt(lnn)s1收敛
    s = 1 s=1 s=1时, ∫ 2 A 1 x l n x d x = l n ∣ l n x ∣ ∣ 2 A = l n ∣ l n A ∣ − l n ∣ l n 3 ∣ → ∞ \int_2^A\frac{1}{xlnx}dx=ln|lnx||_2^A=ln|lnA|-ln|ln3|\to\infty 2Axlnx1dx=lnlnx2A=lnlnAlnln3,此时级数 ∑ n = 2 ∞ 1 n t ( l n n ) s \sum_{n=2}^{\infty}\frac{1}{n^t(lnn)^s} n=2nt(lnn)s1发散
    t > 1 t>1 t>1时:
    n > e n>e n>e时, 1 n t ( l n n ) s < 1 n t \frac{1}{n^t(lnn)^s}<\frac{1}{n^t} nt(lnn)s1<nt1,因为级数 ∑ n = 2 ∞ 1 n t \sum_{n=2}^{\infty}\frac{1}{n^t} n=2nt1收敛,所以级数 ∑ n = 2 ∞ 1 n t ( l n n ) s \sum_{n=2}^{\infty}\frac{1}{n^t(lnn)^s} n=2nt(lnn)s1也收敛
    0 < t < 1 0<t<1 0<t<1时:
    δ \delta δ满足 t < δ < 1 t<\delta<1 t<δ<1 1 n t ( l n n ) s / 1 n δ → ∞ \frac{1}{n^t(lnn)^s}/\frac{1}{n^\delta}\to\infty nt(lnn)s1/nδ1,级数 ∑ n = 2 ∞ 1 n δ \sum_{n=2}^{\infty}\frac{1}{n^\delta} n=2nδ1发散,所以级数 ∑ n = 2 ∞ 1 n t ( l n n ) s \sum_{n=2}^{\infty}\frac{1}{n^t(lnn)^s} n=2nt(lnn)s1也发散
    综上,当 0 < t < 1 0<t<1 0<t<1 t = 1 t=1 t=1 0 < s ≤ 1 0<s\leq1 0<s1时,级数 ∑ n = 2 ∞ ( − 1 ) n + 1 n t ( l n n ) s \sum_{n=2}^\infty\frac{(-1)^{n+1}}{n^t(lnn)^s} n=2nt(lnn)s(1)n+1条件收敛,当 t > 1 t>1 t>1 t = 1 t=1 t=1 s > 1 s>1 s>1时,级数 ∑ n = 2 ∞ ( − 1 ) n + 1 n t ( l n n ) s \sum_{n=2}^\infty\frac{(-1)^{n+1}}{n^t(lnn)^s} n=2nt(lnn)s(1)n+1绝对收敛
    (10) ∑ n = 1 ∞ s i n ( π n 2 + 1 ) = ∑ n = 1 ∞ ( − 1 ) n π s i n ( n 2 + 1 − n ) = ∑ n = 1 ∞ ( − 1 ) n s i n π n 2 + 1 + n \sum_{n=1}^\infty sin(\pi\sqrt{n^2+1})=\sum_{n=1}^\infty(-1)^n\pi sin(\sqrt{n^2+1}-n)=\sum_{n=1}^\infty(-1)^nsin\frac{\pi}{\sqrt{n^2+1}+n} n=1sin(πn2+1 )=n=1(1)nπsin(n2+1 n)=n=1(1)nsinn2+1 +nπ,因为 s i n π n 2 + 1 + n sin\frac{\pi}{\sqrt{n^2+1}+n} sinn2+1 +nπ单调趋向于0,所以级数 ∑ n = 1 ∞ ( − 1 ) n s i n π n 2 + 1 + n \sum_{n=1}^\infty(-1)^nsin\frac{\pi}{\sqrt{n^2+1}+n} n=1(1)nsinn2+1 +nπ收敛。因为 s i n π n 2 + 1 + n / 1 n → π 2 sin\frac{\pi}{\sqrt{n^2+1}+n}/\frac{1}{n}\to\frac{\pi}{2} sinn2+1 +nπ/n12π,并且级数 ∑ n = 1 ∞ 1 n \sum_{n=1}^\infty\frac{1}{n} n=1n1发散,所以级数 ∑ n = 1 ∞ s i n π n 2 + 1 + n \sum_{n=1}^\infty sin\frac{\pi}{\sqrt{n^2+1}+n} n=1sinn2+1 +nπ发散,所以级数 ∑ n = 1 ∞ s i n ( π n 2 + 1 ) \sum_{n=1}^\infty sin(\pi\sqrt{n^2+1}) n=1sin(πn2+1 )条件收敛。
    (11) u n + 1 = 2 n + 1 2 n + 2 u n < u n u_{n+1}=\frac{2n+1}{2n+2}u_n<u_n un+1=2n+22n+1un<un
    0 < u n 2 < 1 2 ⋅ 2 3 ⋅ 3 4 ⋅ 4 5 ⋯ 2 n − 1 2 n ⋅ 2 n 2 n + 1 = 1 2 n + 1 0<u_n^2<\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdots\frac{2n-1}{2n}\cdot\frac{2n}{2n+1}=\frac{1}{2n+1} 0<un2<213243542n2n12n+12n=2n+11
    所以 u n < 1 2 n + 1 u_n<\frac{1}{\sqrt{2n+1}} un<2n+1 1 lim ⁡ n → ∞ u n = 0 \lim_{n\to\infty} u_n=0 limnun=0
    所以级数 ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋯ ( 2 n − 1 ) 2 ⋅ 4 ⋯ ( 2 n ) \sum_{n=1}^\infty (-1)^n\frac{1\cdot3\cdots(2n-1)}{2\cdot4\cdots(2n)} n=1(1)n24(2n)13(2n1)收敛
    因为 n n + 1 > n − 1 n \frac{n}{n+1}>\frac{n-1}{n} n+1n>nn1,所以 u n > 1 2 u n ⋅ 1 2 n u_n>\frac{1}{2u_n}\cdot\frac{1}{2n} un>2un12n1,即 u n > 1 2 n u_n>\frac{1}{2\sqrt{n}} un>2n 1,因为级数 ∑ n = 1 ∞ 1 2 n \sum_{n=1}^\infty\frac{1}{2\sqrt{n}} n=12n 1发散,所以级数 ∑ n = 1 ∞ 1 ⋅ 3 ⋯ ( 2 n − 1 ) 2 ⋅ 4 ⋯ ( 2 n ) \sum_{n=1}^\infty \frac{1\cdot3\cdots(2n-1)}{2\cdot4\cdots(2n)} n=124(2n)13(2n1)发散
    所以级数 ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋯ ( 2 n − 1 ) 2 ⋅ 4 ⋯ ( 2 n ) \sum_{n=1}^\infty (-1)^n\frac{1\cdot3\cdots(2n-1)}{2\cdot4\cdots(2n)} n=1(1)n24(2n)13(2n1)条件收敛
  2. 已知级数 ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n n=1un收敛,证明级数 ∑ n = 1 ∞ u n n p ( p > 0 ) \sum_{n=1}^\infty \frac{u_n}{n^p}(p>0) n=1npun(p>0) ∑ n = 1 ∞ n n + 1 u n \sum_{n=1}^\infty \frac{n}{n+1}u_n n=1n+1nun均收敛
    证明:
    数列 { 1 u p } \{\frac{1}{u^p}\} {up1} n n + 1 \frac{n}{n+1} n+1n都单调有界,因为级数 ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n n=1un收敛,所以级数 ∑ n = 1 ∞ u n n p ( p > 0 ) \sum_{n=1}^\infty \frac{u_n}{n^p}(p>0) n=1npun(p>0) ∑ n = 1 ∞ n n + 1 u n \sum_{n=1}^\infty \frac{n}{n+1}u_n n=1n+1nun均收敛
  3. 证明级数 ∑ n = 1 ∞ c o s n φ n p ( 0 < φ < 2 π ) \sum_{n=1}^\infty \frac{cosn\varphi}{n^p}(0<\varphi<2\pi) n=1npcosnφ(0<φ<2π) p > 1 p>1 p>1时绝对收敛,当 0 < p ≤ 1 0<p\leq1 0<p1时条件收敛
    证明:
    p > 1 p>1 p>1时,级数 ∑ n = 1 ∞ 1 n p \sum_{n=1}^\infty\frac{1}{n^p} n=1np1收敛,因为 ∣ c o s n φ n p ∣ ≤ 1 n p |\frac{cosn\varphi}{n^p}|\leq\frac{1}{n^p} npcosnφnp1,所以级数 ∑ n = 1 ∞ c o s n φ n p \sum_{n=1}^\infty \frac{cosn\varphi}{n^p} n=1npcosnφ绝对收敛
    0 < p ≤ 1 0<p\leq1 0<p1时,因为数列 { 1 n p } \{\frac{1}{n^p}\} {np1}单调趋向0,部分和 ∑ k = 1 n c o s k φ \sum_{k=1}^ncosk\varphi k=1ncoskφ有界,所以级数 ∑ n = 1 ∞ c o s n φ n p \sum_{n=1}^\infty \frac{cosn\varphi}{n^p} n=1npcosnφ收敛
    φ ≠ π \varphi\neq\pi φ=π时,因为数列 { 1 2 n p } \{\frac{1}{2n^p}\} {2np1}单调趋向0,部分和 ∑ k = 1 n c o s 2 k φ \sum_{k=1}^ncos2k\varphi k=1ncos2kφ有界,所以级数 ∑ n = 1 ∞ c o s 2 n φ 2 n p \sum_{n=1}^\infty \frac{cos2n\varphi}{2n^p} n=12npcos2nφ收敛,因为级数 ∑ n = 1 ∞ 1 2 n p \sum_{n=1}^\infty\frac{1}{2n^p} n=12np1发散,所以级数 ∑ n = 1 ∞ 1 + 2 c o s n φ 2 n p \sum_{n=1}^\infty\frac{1+2cosn\varphi}{2n^p} n=12np1+2cosnφ发散,因为 ∣ c o s n φ n p ∣ ≥ c o s 2 n φ n p = 1 + 2 c o s n φ 2 n p |\frac{cosn\varphi}{n^p}|\geq\frac{cos^2n\varphi}{n^p}=\frac{1+2cosn\varphi}{2n^p} npcosnφnpcos2nφ=2np1+2cosnφ,所以级数 ∑ n = 1 ∞ ∣ c o s n φ n p ∣ \sum_{n=1}^\infty|\frac{cosn\varphi}{n^p}| n=1npcosnφ发散。
    φ = π \varphi=\pi φ=π时, ∑ n = 1 ∞ ∣ c o s n φ n p ∣ = ∑ n = 1 ∞ 1 n p \sum_{n=1}^\infty|\frac{cosn\varphi}{n^p}|=\sum_{n=1}^\infty\frac{1}{n^p} n=1npcosnφ=n=1np1,发散。
    所以级数 ∑ n = 1 ∞ c o s n φ n p \sum_{n=1}^\infty \frac{cosn\varphi}{n^p} n=1npcosnφ条件收敛
  4. 研究级数 ∑ n = 1 ∞ c o s n φ n p ( 1 + 1 n ) n ( 0 < φ < 2 π , p > 0 ) \sum_{n=1}^\infty \frac{cosn\varphi}{n^p}(1+\frac{1}{n})^n(0<\varphi<2\pi,p>0) n=1npcosnφ(1+n1)n(0<φ<2π,p>0)的敛散性
    解:
    p > 1 p>1 p>1时,级数 ∑ n = 1 ∞ 1 n p \sum_{n=1}^\infty\frac{1}{n^p} n=1np1收敛,因为 ∣ c o s n φ n p ∣ ≤ 1 n p |\frac{cosn\varphi}{n^p}|\leq\frac{1}{n^p} npcosnφnp1,所以级数 ∑ n = 1 ∞ c o s n φ n p \sum_{n=1}^\infty \frac{cosn\varphi}{n^p} n=1npcosnφ绝对收敛
    0 < p ≤ 1 0<p\leq1 0<p1时,因为数列 { 1 n p } \{\frac{1}{n^p}\} {np1}单调趋向0,部分和 ∑ k = 1 n c o s k φ \sum_{k=1}^ncosk\varphi k=1ncoskφ有界,所以级数 ∑ n = 1 ∞ c o s n φ n p \sum_{n=1}^\infty \frac{cosn\varphi}{n^p} n=1npcosnφ收敛
    所以级数 ∑ n = 1 ∞ c o s n φ n p \sum_{n=1}^\infty \frac{cosn\varphi}{n^p} n=1npcosnφ收敛
    因为数列 { ( 1 + 1 n ) n } \{(1+\frac{1}{n})^n\} {(1+n1)n}单调有界,所以级数 ∑ n = 1 ∞ c o s n φ n p ( 1 + 1 n ) n \sum_{n=1}^\infty \frac{cosn\varphi}{n^p}(1+\frac{1}{n})^n n=1npcosnφ(1+n1)n收敛
  5. 形如 ∑ n = 1 ∞ a n n x \sum_{n=1}^\infty\frac{a_n}{n^x} n=1nxan的级数称作狄利克雷级数。证明它有下列性质:若级数 ∑ n = 1 ∞ a n n x 0 \sum_{n=1}^\infty\frac{a_n}{n^{x_0}} n=1nx0an收敛(发散),那么当 x > x 0 ( x < x 0 ) x>x_0(x<x_0) x>x0(x<x0)时,级数 ∑ n = 1 ∞ a n n x \sum_{n=1}^\infty\frac{a_n}{n^x} n=1nxan也收敛(发散)
    证明:
    设级数 ∑ n = 1 ∞ a n n x 0 \sum_{n=1}^\infty\frac{a_n}{n^{x_0}} n=1nx0an收敛,当 x > x 0 x>x_0 x>x0时,数列 { n x 0 − x } \{n^{x0-x}\} {nx0x}单调有界,所以级数 ∑ n = 1 ∞ a n n x = ∑ n = 1 ∞ a n n x 0 n x 0 − x \sum_{n=1}^\infty\frac{a_n}{n^x}=\sum_{n=1}^\infty\frac{a_n}{n^{x_0}}n^{x_0-x} n=1nxan=n=1nx0annx0x收敛。
  6. 设级数 ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n n=1un绝对收敛,证明级数 ∑ n = 1 ∞ 2 n − 1 n u n \sum_{n=1}^\infty\frac{2n-1}{n}u_n n=1n2n1un也绝对收敛
    证明:
    因为级数 ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n n=1un绝对收敛,所以级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^\infty|u_n| n=1un收敛
    因为 ∣ 2 n − 1 n u n ∣ < 2 ∣ u n ∣ |\frac{2n-1}{n}u_n|<2|u_n| n2n1un<2un,所以级数 ∑ n = 1 ∞ ∣ 2 n − 1 n u n ∣ \sum_{n=1}^\infty|\frac{2n-1}{n}u_n| n=1n2n1un收敛,所以级数 ∑ n = 1 ∞ 2 n − 1 n u n \sum_{n=1}^\infty\frac{2n-1}{n}u_n n=1n2n1un绝对收敛
  7. 证明:将收敛级数 ∑ n = 1 ∞ ( − 1 ) n − 1 n \sum_{n=1}^\infty\frac{(-1)^{n-1}}{\sqrt{n}} n=1n (1)n1重排后的级数 1 + 1 3 − 1 2 + ⋯ + 1 4 k − 3 + 1 4 k − 1 − 1 2 k 1+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{4k-3}}+\frac{1}{\sqrt{4k-1}}-\frac{1}{\sqrt{2k}} 1+3 12 1++4k3 1+4k1 12k 1发散
    证明:
    v k = 1 4 k − 3 + 1 4 k − 1 − 1 2 k v_k=\frac{1}{\sqrt{4k-3}}+\frac{1}{\sqrt{4k-1}}-\frac{1}{\sqrt{2k}} vk=4k3 1+4k1 12k 1,则:
    v k = ( 4 k − 3 + 4 k − 1 ) 2 k − 4 k − 3 4 k − 1 4 k − 3 4 k − 1 2 k > ( 4 k − 3 + 4 k − 1 ) ( 2 k − 1 2 ) 4 k − 3 4 k − 1 2 k > 0 \begin{aligned} v_k&=\frac{(\sqrt{4k-3}+\sqrt{4k-1})\sqrt{2k}-\sqrt{4k-3}\sqrt{4k-1}}{\sqrt{4k-3}\sqrt{4k-1}\sqrt{2k}}\\ &>\frac{(\sqrt{4k-3}+\sqrt{4k-1})(\sqrt{2k}-\frac{1}{2})}{\sqrt{4k-3}\sqrt{4k-1}\sqrt{2k}}>0\\ \end{aligned} vk=4k3 4k1 2k (4k3 +4k1 )2k 4k3 4k1 >4k3 4k1 2k (4k3 +4k1 )(2k 21)>0
    所以级数 ∑ k = 1 ∞ v k \sum_{k=1}^\infty v_k k=1vk是正项级数
    v k / 1 k → 1 − 2 2 v_k/\frac{1}{\sqrt{k}}\to1-\frac{\sqrt{2}}{2} vk/k 1122 ,因为级数 ∑ k = 1 ∞ 1 k \sum_{k=1}^\infty\frac{1}{\sqrt{k}} k=1k 1发散,所以级数 ∑ k = 1 ∞ v k \sum_{k=1}^\infty v_k k=1vk发散
    所以重排后的级数 1 + 1 3 − 1 2 + ⋯ + 1 4 k − 3 + 1 4 k − 1 − 1 2 k 1+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{4k-3}}+\frac{1}{\sqrt{4k-1}}-\frac{1}{\sqrt{2k}} 1+3 12 1++4k3 1+4k1 12k 1发散
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值