高数习题10.5

  1. 求下列幂级数的收敛半径:
    (1) ∑ n = 1 ∞ x n n 2 n ; \sum_{n=1}^\infty\frac{x^n}{n2^n}; n=1n2nxn; (2) ∑ n = 1 ∞ n k n ! x n ; \sum_{n=1}^\infty\frac{n^k}{n!}x^n; n=1n!nkxn;
    (3) ∑ n = 1 ∞ n ! n n x n ; \sum_{n=1}^\infty\frac{n!}{n^n}x^n; n=1nnn!xn; (4) ∑ n = 1 ∞ ( n ! ) 2 ( 2 n ) ! x n ; \sum_{n=1}^\infty\frac{(n!)^2}{(2n)!}x^n; n=1(2n)!(n!)2xn;
    解:
    (1) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ n 2 ( n + 1 ) = 1 2 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{n}{2(n+1)}=\frac{1}{2} limnanan+1=limn2(n+1)n=21,收敛半径为2
    (2) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ ( 1 + 1 n ) k ⋅ 1 n + 1 = 0 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}(1+\frac{1}{n})^k\cdot\frac{1}{n+1}=0 limnanan+1=limn(1+n1)kn+11=0,收敛半径为 + ∞ +\infty +
    (3) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ ( 1 + 1 n ) − n = e − 1 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}(1+\frac{1}{n})^{-n}=e^{-1} limnanan+1=limn(1+n1)n=e1,收敛半径为 e e e
    (4) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ ( n + 1 ) 2 ( 2 n + 1 ) ( 2 n + 2 ) = 1 4 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{(n+1)^2}{(2n+1)(2n+2)}=\frac{1}{4} limnanan+1=limn(2n+1)(2n+2)(n+1)2=41,收敛半径为4
  2. 求下列幂级数的收敛区间与收敛域:
    (1) x + x 2 2 3 + x 3 3 3 + ⋯   ; x+\frac{x^2}{\sqrt[3]{2}}+\frac{x^3}{\sqrt[3]{3}}+\cdots; x+32 x2+33 x3+;
    (2) 1 + x a + x 2 2 a 2 + ⋯ + x n n a n + ⋯ ( a > 0 ) ; 1+\frac{x}{a}+\frac{x^2}{2a^2}+\cdots+\frac{x^n}{na^n}+\cdots(a>0); 1+ax+2a2x2++nanxn+(a>0);
    (3) x − x 3 3 ⋅ 3 ! + x 5 5 ⋅ 5 ! − ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ⋅ ( 2 n + 1 ) ! + ⋯   ; x-\frac{x^3}{3\cdot3!}+\frac{x^5}{5\cdot5!}-\cdots+(-1)^n\frac{x^{2n+1}}{(2n+1)\cdot(2n+1)!}+\cdots; x33!x3+55!x5+(1)n(2n+1)(2n+1)!x2n+1+;
    (4) ∑ n = 1 ∞ n n + 1 ( x 2 ) n ; \sum_{n=1}^\infty\frac{n}{n+1}(\frac{x}{2})^n; n=1n+1n(2x)n;
    (5) x + x 3 + x 5 + ⋯ + x 2 n + 1 + ⋯   ; x+x^3+x^5+\cdots+x^{2n+1}+\cdots; x+x3+x5++x2n+1+;
    (6) ∑ n = 1 ∞ ( 3 − n + 5 − n ) x n ; \sum_{n=1}^\infty(3^{-n}+5^{-n})x^n; n=1(3n+5n)xn;
    (7) ∑ n = 1 ∞ ( 1 n + e − n ) x n ; \sum_{n=1}^\infty(\frac{1}{n}+e^{-n})x^n; n=1(n1+en)xn;
    (8) ∑ n = 1 ∞ ( 3 n + 5 n ) x n ; \sum_{n=1}^\infty(3^n+5^n)x^n; n=1(3n+5n)xn;
    (9) ∑ n = 1 ∞ ( 1 + 1 2 + ⋯ + 1 n ) x n ; \sum_{n=1}^\infty(1+\frac{1}{2}+\cdots+\frac{1}{n})x^n; n=1(1+21++n1)xn;
    (10) ∑ n = 1 ∞ ( 2 n ) ! ! ( 2 n + 1 ) ! ! x n ; \sum_{n=1}^\infty\frac{(2n)!!}{(2n+1)!!}x^n; n=1(2n+1)!!(2n)!!xn;
    (11) ∑ n = 1 ∞ n ! ( x − 2 ) n n n \sum_{n=1}^\infty\frac{n!(x-2)^n}{n^n} n=1nnn!(x2)n
    解:
    (1) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ n 3 n + 1 3 = 1 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{\sqrt[3]{n}}{\sqrt[3]{n+1}}=1 limnanan+1=limn3n+1 3n =1,所以收敛区间为 ( − 1 , 1 ) (-1,1) (1,1)。当 x = 1 x=1 x=1时,级数为 ∑ n = 1 ∞ 1 n 3 2 \sum_{n=1}^\infty\frac{1}{n^{\frac{3}{2}}} n=1n231,此级数发散。当 x = − 1 x=-1 x=1时,级数为 ∑ n = 1 ∞ ( − 1 ) n n 3 2 \sum_{n=1}^\infty\frac{(-1)^n}{n^{\frac{3}{2}}} n=1n23(1)n,此级数收敛。所以收敛域为 [ − 1 , 1 ) [-1,1) [1,1)
    (2) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ n ( n + 1 ) a = 1 a \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{n}{(n+1)a}=\frac{1}{a} limnanan+1=limn(n+1)an=a1,所以收敛区间为 ( − a , a ) (-a,a) (a,a)。当 x = a x=a x=a时,级数为 ∑ n = 1 ∞ 1 n \sum_{n=1}^\infty\frac{1}{n} n=1n1,此级数发散。当 x = − a x=-a x=a时,级数为 ∑ n = 1 ∞ ( − 1 ) n n \sum_{n=1}^\infty\frac{(-1)^n}{n} n=1n(1)n,此级数收敛。所以收敛域为 [ − a , a ) [-a,a) [a,a)
    (3) lim ⁡ n → ∞ ∣ x 2 n + 3 ∣ ( 2 n + 1 ) ⋅ ( 2 n + 1 ) ! ∣ x 2 n + 1 ∣ ( 2 n + 3 ) ⋅ ( 2 n + 3 ) ! = lim ⁡ n → ∞ ( 2 n + 1 ) x 2 ( 2 n + 3 ) 2 ( 2 n + 2 ) = 0 \lim_{n\to\infty}\frac{|x^{2n+3}|(2n+1)\cdot(2n+1)!}{|x^{2n+1}|(2n+3)\cdot(2n+3)!}=\lim_{n\to\infty}\frac{(2n+1)x^2}{(2n+3)^2(2n+2)}=0 limnx2n+1(2n+3)(2n+3)!x2n+3(2n+1)(2n+1)!=limn(2n+3)2(2n+2)(2n+1)x2=0,所以收敛区间和收敛域都为 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)
    (4) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ ( n + 1 ) 2 2 n ( n + 2 ) = 1 2 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{(n+1)^2}{2n(n+2)}=\frac{1}{2} limnanan+1=limn2n(n+2)(n+1)2=21,所以收敛区间为 ( − 2 , 2 ) (-2,2) (2,2)。当 x = 2 x=2 x=2时,级数为 ∑ n = 1 ∞ n n + 1 \sum_{n=1}^\infty\frac{n}{n+1} n=1n+1n,此级数发散。当 x = − 2 x=-2 x=2时,级数为 ∑ n = 1 ∞ ( − 1 ) n n n + 1 \sum_{n=1}^\infty(-1)^n\frac{n}{n+1} n=1(1)nn+1n,此级数发散。所以收敛域为 ( − 2 , 2 ) (-2,2) (2,2)
    (5) 因为原级数为等比级数,所以当且仅当 x 2 < 1 x^2<1 x2<1时,级数收敛,所以收敛区间和收敛域都为 ( − 1 , 1 ) (-1,1) (1,1)
    (6) lim ⁡ n → ∞ a n n = lim ⁡ n → ∞ 3 − n + 5 − n n = 1 3 \lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\sqrt[n]{3^{-n}+5^{-n}}=\frac{1}{3} limnnan =limnn3n+5n =31,所以收敛区间为 ( − 3 , 3 ) (-3,3) (3,3),当 x = ± 3 x=\pm3 x=±3时, lim ⁡ n → ∞ a n ≠ 0 \lim_{n\to\infty}a_n\neq0 limnan=0,所以收敛域为 ( − 3 , 3 ) (-3,3) (3,3)
    (7) lim ⁡ n → ∞ a n n = lim ⁡ n → ∞ 1 n + e − n n = lim ⁡ n → ∞ 1 n ( 1 + n e n ) n = 1 \lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\sqrt[n]{\frac{1}{n}+e^{-n}}=\lim_{n\to\infty}\sqrt[n]{\frac{1}{n}(1+\frac{n}{e^n})}=1 limnnan =limnnn1+en =limnnn1(1+enn) =1,所以收敛区间为 ( − 1 , 1 ) (-1,1) (1,1)。当 x = 1 x=1 x=1时,级数为 ∑ n = 1 ∞ ( 1 n + e − n ) \sum_{n=1}^\infty(\frac{1}{n}+e^{-n}) n=1(n1+en),因为级数 ∑ n = 1 ∞ 1 n \sum_{n=1}^\infty\frac{1}{n} n=1n1发散,级数 ∑ n = 1 ∞ e − n \sum_{n=1}^\infty e^{-n} n=1en收敛,所以此级数发散。当 x = − 1 x=-1 x=1时,级数为 ∑ n = 1 ∞ ( − 1 ) n ( 1 n + e − n ) \sum_{n=1}^\infty(-1)^n(\frac{1}{n}+e^{-n}) n=1(1)n(n1+en),此级数收敛。所以收敛域为 [ − 1 , 1 ) [-1,1) [1,1)
    (8) lim ⁡ n → ∞ a n n = lim ⁡ n → ∞ 3 n + 5 n n = 5 \lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\sqrt[n]{3^n+5^n}=5 limnnan =limnn3n+5n =5,所以收敛区间为 ( − 1 5 , 1 5 ) (-\frac{1}{5},\frac{1}{5}) (51,51),当 x = ± 1 5 x=\pm\frac{1}{5} x=±51时, lim ⁡ n → ∞ a n ≠ 0 \lim_{n\to\infty}a_n\neq0 limnan=0,所以收敛域为 ( − 1 5 , 1 5 ) (-\frac{1}{5},\frac{1}{5}) (51,51)
    (9) 因为 1 ≤ 1 + 1 2 + ⋯ + 1 n ≤ n 1\leq1+\frac{1}{2}+\cdots+\frac{1}{n}\leq n 11+21++n1n,所以 lim ⁡ n → ∞ a n n = 1 \lim_{n\to\infty}\sqrt[n]{a_n}=1 limnnan =1,所以收敛区间为 ( − 1 , 1 ) (-1,1) (1,1)。当 x = ± 1 x=\pm1 x=±1时, lim ⁡ n → ∞ a n = ∞ ≠ 0 \lim_{n\to\infty}a_n=\infty\neq0 limnan==0,所以收敛域为 ( − 1 , 1 ) (-1,1) (1,1)
    (10) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ 2 n + 2 2 n + 3 = 1 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{2n+2}{2n+3}=1 limnanan+1=limn2n+32n+2=1,所以收敛区间为 ( − 1 , 1 ) (-1,1) (1,1)。当 x = 1 x=1 x=1时,级数为 ∑ n = 1 ∞ ( 2 n ) ! ! ( 2 n + 1 ) ! ! \sum_{n=1}^\infty\frac{(2n)!!}{(2n+1)!!} n=1(2n+1)!!(2n)!!,因为 n n + 1 > n − 1 n \frac{n}{n+1}>\frac{n-1}{n} n+1n>nn1,所以 u n > 1 u n ⋅ 1 2 n + 1 u_n>\frac{1}{u_n}\cdot\frac{1}{2n+1} un>un12n+11,即 u n > 1 2 n + 1 u_n>\frac{1}{\sqrt{2n+1}} un>2n+1 1,因为级数 ∑ n = 1 ∞ 1 2 n + 1 \sum_{n=1}^\infty\frac{1}{\sqrt{2n+1}} n=12n+1 1发散,所以级数发散。当 x = − 1 x=-1 x=1时,级数为 ∑ n = 1 ∞ ( − 1 ) n ( 2 n ) ! ! ( 2 n + 1 ) ! ! \sum_{n=1}^\infty(-1)^n\frac{(2n)!!}{(2n+1)!!} n=1(1)n(2n+1)!!(2n)!!,因为 0 < u n 2 < 2 3 ⋅ 3 4 ⋅ 4 5 ⋅ 5 6 ⋯ 2 n 2 n + 1 ⋅ 2 n + 1 2 n + 2 = 1 n + 1 0<u_n^2<\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdots\frac{2n}{2n+1}\cdot\frac{2n+1}{2n+2}=\frac{1}{n+1} 0<un2<324354652n+12n2n+22n+1=n+11,所以 u n < 1 n + 1 u_n<\frac{1}{\sqrt{n+1}} un<n+1 1 lim ⁡ n → ∞ u n = 0 \lim_{n\to\infty} u_n=0 limnun=0,此级数收敛。所以收敛域为 [ − 1 , 1 ) [-1,1) [1,1)
    (11) lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ 1 ( 1 + 1 n ) n = 1 e \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{1}{(1+\frac{1}{n})^n}=\frac{1}{e} limnanan+1=limn(1+n1)n1=e1,所以收敛区间为 ( 2 − e , 2 + e ) (2-e,2+e) (2e,2+e)。当 x = 2 + e x=2+e x=2+e时,级数为 ∑ n = 1 ∞ n ! e n n n \sum_{n=1}^\infty\frac{n!e^n}{n^n} n=1nnn!en,因为 a n + 1 a n = e ( 1 + 1 n ) n > 1 \frac{a_{n+1}}{a_n}=\frac{e}{(1+\frac{1}{n})^n}>1 anan+1=(1+n1)ne>1,且 a 1 = e a_1=e a1=e,所以级数发散。当 x = 2 − e x=2-e x=2e时,级数为 ∑ n = 1 ∞ ( − 1 ) n n ! e n n n \sum_{n=1}^\infty(-1)^n\frac{n!e^n}{n^n} n=1(1)nnnn!en,因为 a n + 1 a n = e ( 1 + 1 n ) n > 1 \frac{a_{n+1}}{a_n}=\frac{e}{(1+\frac{1}{n})^n}>1 anan+1=(1+n1)ne>1,且 a 1 = e a_1=e a1=e,所以级数发散。所以收敛域为 ( 2 − e , 2 + e ) (2-e,2+e) (2e,2+e)
  3. 求下列幂级数的和函数:
    (1) ∑ n = 0 ∞ ( n + 1 ) x n ; \sum_{n=0}^\infty(n+1)x^n; n=0(n+1)xn; (2) ∑ n = 1 ∞ ( − 1 ) n − 1 ( 2 n − 1 ) x 2 n − 2 ; \sum_{n=1}^\infty(-1)^{n-1}(2n-1)x^{2n-2}; n=1(1)n1(2n1)x2n2;
    (3) ∑ n = 1 ∞ ( − 1 ) n − 1 x n + 1 n ( n + 1 ) ; \sum_{n=1}^\infty(-1)^{n-1}\frac{x^{n+1}}{n(n+1)}; n=1(1)n1n(n+1)xn+1; (4) ∑ n = 1 ∞ ( − 1 ) n − 1 n ( 2 n − 1 ) x 2 n ; \sum_{n=1}^\infty\frac{(-1)^{n-1}}{n(2n-1)}x^{2n}; n=1n(2n1)(1)n1x2n;
    (5) ∑ n = 0 ∞ ( 2 n + 1 ) n ! x 2 n ; \sum_{n=0}^\infty\frac{(2n+1)}{n!}x^{2n}; n=0n!(2n+1)x2n; (6) ∑ n = 1 ∞ 2 n − 1 2 n x 2 n − 2 ; \sum_{n=1}^\infty\frac{2n-1}{2^n}x^{2n-2}; n=12n2n1x2n2;
    (7) ∑ n = 1 ∞ x n n ( n + 1 ) \sum_{n=1}^\infty\frac{x^n}{n(n+1)} n=1n(n+1)xn
    解:
    (1) 级数 ∑ n = 0 ∞ x n + 1 \sum_{n=0}^\infty x^{n+1} n=0xn+1的和函数为 x 1 − x \frac{x}{1-x} 1xx。所以级数 ∑ n = 0 ∞ ( n + 1 ) x n = ∑ n = 0 ∞ ( x n + 1 ) ′ \sum_{n=0}^\infty(n+1)x^n=\sum_{n=0}^\infty(x^{n+1})' n=0(n+1)xn=n=0(xn+1)的和函数为 ( x 1 − x ) ′ = 1 ( 1 − x ) 2 (\frac{x}{1-x})'=\frac{1}{(1-x)^2} (1xx)=(1x)21。因为 lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ n + 1 n = 1 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{n+1}{n}=1 limnanan+1=limnnn+1=1,所以收敛半径为1。当 x = ± 1 x=\pm1 x=±1时,级数发散,所以收敛域为 ( − 1 , 1 ) (-1,1) (1,1)
    (2) 级数 ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 n − 1 \sum_{n=1}^\infty(-1)^{n-1}x^{2n-1} n=1(1)n1x2n1的和函数为 x 1 + x 2 \frac{x}{1+x^2} 1+x2x,所以级数 ∑ n = 1 ∞ ( − 1 ) n − 1 ( 2 n − 1 ) x 2 n − 2 = ∑ n = 0 ∞ ( − 1 ) n − 1 ( x 2 n − 1 ) ′ \sum_{n=1}^\infty(-1)^{n-1}(2n-1)x^{2n-2}=\sum_{n=0}^\infty(-1)^{n-1}(x^{2n-1})' n=1(1)n1(2n1)x2n2=n=0(1)n1(x2n1)的和函数为 ( x 1 + x 2 ) ′ = 1 − x 2 ( 1 + x 2 ) 2 (\frac{x}{1+x^2})'=\frac{1-x^2}{(1+x^2)^2} (1+x2x)=(1+x2)21x2。因为 lim ⁡ n → ∞ ∣ u n + 1 u n ∣ = lim ⁡ n → ∞ ( 2 n + 1 ) x 2 2 n − 1 = x 2 \lim_{n\to\infty}|\frac{u_{n+1}}{u_n}|=\lim_{n\to\infty}\frac{(2n+1)x^2}{2n-1}=x^2 limnunun+1=limn2n1(2n+1)x2=x2,所以收敛半径为1。当 x = ± 1 x=\pm1 x=±1时,级数发散,所以收敛域为 ( − 1 , 1 ) (-1,1) (1,1)
    (3) 级数 ∑ n = 1 ∞ ( − 1 ) n − 1 ( x n + 1 n ( n + 1 ) ) ′ = ∑ n = 1 ∞ ( − 1 ) n − 1 ( x n n ) \sum_{n=1}^\infty(-1)^{n-1}(\frac{x^{n+1}}{n(n+1)})'=\sum_{n=1}^\infty(-1)^{n-1}(\frac{x^n}{n}) n=1(1)n1(n(n+1)xn+1)=n=1(1)n1(nxn)的和函数为 l n ( 1 + x ) ln(1+x) ln(1+x),所以级数的和函数为 ∫ 0 x l n ( 1 + t ) d t = ( 1 + x ) l n ( 1 + x ) − x \int_0^xln(1+t)dt=(1+x)ln(1+x)-x 0xln(1+t)dt=(1+x)ln(1+x)x。因为 lim ⁡ n → ∞ ∣ u n + 1 u n ∣ = lim ⁡ n → ∞ n ∣ x ∣ n + 2 = ∣ x ∣ \lim_{n\to\infty}|\frac{u_{n+1}}{u_n}|=\lim_{n\to\infty}\frac{n|x|}{n+2}=|x| limnunun+1=limnn+2nx=x,所以收敛半径为1。当 x = ± 1 x=\pm1 x=±1时,级数 ∑ n = 1 ∞ x n + 1 n ( n + 1 ) \sum_{n=1}^\infty\frac{x^{n+1}}{n(n+1)} n=1n(n+1)xn+1收敛,当 x = − 1 x=-1 x=1时,和函数 ( 1 + x ) l n ( 1 + x ) − x (1+x)ln(1+x)-x (1+x)ln(1+x)x没有定义, ∑ n = 1 ∞ ( − 1 ) n − 1 ( − 1 ) n + 1 n ( n + 1 ) = 1 \sum_{n=1}^\infty(-1)^{n-1}\frac{(-1)^{n+1}}{n(n+1)}=1 n=1(1)n1n(n+1)(1)n+1=1,所以收敛域为 [ − 1 , 1 ] [-1,1] [1,1]
    S ( x ) = { ( 1 + x ) l n ( 1 + x ) − x , x ∈ ( − 1 , 1 ] 1 , x = − 1 , S(x)=\begin{cases}(1+x)ln(1+x)-x,x\in(-1,1]\\1,x=-1,\\\end{cases} S(x)={(1+x)ln(1+x)x,x(1,1]1,x=1,
    (4) 级数 ∑ n = 1 ∞ ( ( − 1 ) n − 1 n ( 2 n − 1 ) x 2 n ) ′ ′ = ∑ n = 1 ∞ 2 ( − 1 ) n − 1 x 2 n − 2 \sum_{n=1}^\infty(\frac{(-1)^{n-1}}{n(2n-1)}x^{2n})''=\sum_{n=1}^\infty2(-1)^{n-1}x^{2n-2} n=1(n(2n1)(1)n1x2n)=n=12(1)n1x2n2的和函数为 2 1 + x 2 \frac{2}{1+x^2} 1+x22,所以级数的和函数为 ∫ 0 x ∫ 0 y 2 1 + t 2 d t d y = ∫ 0 x 2 a r c t a n y d y = 2 x a r c t a n x − l n ( 1 + x 2 ) \int_0^x\int_0^y\frac{2}{1+t^2}dtdy=\int_0^x2arctanydy=2xarctanx-ln(1+x^2) 0x0y1+t22dtdy=0x2arctanydy=2xarctanxln(1+x2)。因为 lim ⁡ n → ∞ ∣ u n + 1 u n ∣ = lim ⁡ n → ∞ n ( 2 n − 1 ) x 2 ( n + 1 ) ( 2 n + 1 ) = x 2 \lim_{n\to\infty}|\frac{u_{n+1}}{u_n}|=\lim_{n\to\infty}\frac{n(2n-1)x^2}{(n+1)(2n+1)}=x^2 limnunun+1=limn(n+1)(2n+1)n(2n1)x2=x2,所以收敛半径为1。当 x = ± 1 x=\pm1 x=±1时,级数 ∑ n = 1 ∞ ( − 1 ) n − 1 n ( 2 n − 1 ) x 2 n \sum_{n=1}^\infty\frac{(-1)^{n-1}}{n(2n-1)}x^{2n} n=1n(2n1)(1)n1x2n收敛,所以收敛域为 [ − 1 , 1 ] [-1,1] [1,1]
    (5) 级数 ∑ n = 1 ∞ x 2 n + 1 n ! \sum_{n=1}^\infty\frac{x^{2n+1}}{n!} n=1n!x2n+1的和函数为 x e x 2 xe^{x^2} xex2,所以级数 ∑ n = 1 ∞ ( 2 n + 1 ) n ! x 2 n = ∑ n = 0 ∞ ( x 2 n + 1 n ! ) ′ \sum_{n=1}^\infty\frac{(2n+1)}{n!}x^{2n}=\sum_{n=0}^\infty(\frac{x^{2n+1}}{n!})' n=1n!(2n+1)x2n=n=0(n!x2n+1)的和函数为 ( x e x 2 ) ′ = ( 1 + 2 x 2 ) e x 2 (xe^{x^2})'=(1+2x^2)e^{x^2} (xex2)=(1+2x2)ex2,因为 lim ⁡ n → ∞ ∣ u n + 1 u n ∣ = lim ⁡ n → ∞ ( 2 n + 3 ) x 2 ( n + 1 ) ( 2 n + 1 ) = 0 \lim_{n\to\infty}|\frac{u_{n+1}}{u_n}|=\lim_{n\to\infty}\frac{(2n+3)x^2}{(n+1)(2n+1)}=0 limnunun+1=limn(n+1)(2n+1)(2n+3)x2=0,所以收敛半径为 + ∞ +\infty +,所以收敛域为 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)
    (6) 级数 ∑ n = 1 ∞ x 2 n − 1 2 n = x 2 ∑ n = 0 ∞ ( x 2 ) n \sum_{n=1}^\infty \frac{x^{2n-1}}{2^n}=\frac{x}{2}\sum_{n=0}^\infty(\frac{x}{2})^n n=12nx2n1=2xn=0(2x)n的和函数为 x 2 − x 2 \frac{x}{2-x^2} 2x2x,所以级数 ∑ n = 1 ∞ 2 n − 1 2 n x 2 n − 2 = ∑ n = 1 ∞ ( x 2 n − 1 2 n ) ′ \sum_{n=1}^\infty\frac{2n-1}{2^n}x^{2n-2}=\sum_{n=1}^\infty(\frac{x^{2n-1}}{2^n})' n=12n2n1x2n2=n=1(2nx2n1)的和函数为 ( x 2 − x 2 ) ′ = 2 + x 2 ( 2 − x 2 ) 2 (\frac{x}{2-x^2})'=\frac{2+x^2}{(2-x^2)^2} (2x2x)=(2x2)22+x2。因为 lim ⁡ n → ∞ ∣ u n + 1 u n ∣ = lim ⁡ n → ∞ ( 2 n + 1 ) x 2 2 ( 2 n − 1 ) = 1 2 x 2 \lim_{n\to\infty}|\frac{u_{n+1}}{u_n}|=\lim_{n\to\infty}\frac{(2n+1)x^2}{2(2n-1)}=\frac{1}{2}x^2 limnunun+1=limn2(2n1)(2n+1)x2=21x2,所以收敛半径为 2 \sqrt{2} 2 。当 x = ± 2 x=\pm\sqrt{2} x=±2 时,级数为 ∑ n = 1 ∞ 2 n − 1 2 \sum_{n=1}^\infty\frac{2n-1}{2} n=122n1级数发散,所以收敛域为 ( − 2 , 2 ) (-\sqrt{2},\sqrt{2}) (2 ,2 )
    (7)
    ∑ n = 1 ∞ x n n ( n + 1 ) = ∫ 0 x ∑ n = 1 ∞ x n − 1 n + 1 d x = ∫ 0 x 1 x 2 ∑ n = 1 ∞ x n + 1 n + 1 d x = ∫ 0 x 1 x 2 ( ∫ 0 x ∑ n = 1 ∞ x n d x ) d x = ∫ 0 x 1 x 2 ( ∫ 0 x 1 1 − x − 1 d x ) d x = − ∫ 0 x 1 x 2 l n ( 1 − x ) + x d x = − ∫ 0 x l n ( 1 − x ) x 2 d x − ∫ 0 x 1 x d x = l n ( 1 − x ) x + 1 − l n ( 1 − x ) \begin{aligned} \sum_{n=1}^\infty\frac{x^n}{n(n+1)}&=\int_0^x\sum_{n=1}^\infty\frac{x^{n-1}}{n+1}dx\\ &=\int_0^x\frac{1}{x^2}\sum_{n=1}^\infty\frac{x^{n+1}}{n+1}dx\\ &=\int_0^x\frac{1}{x^2}(\int_0^x\sum_{n=1}^\infty x^ndx)dx\\ &=\int_0^x\frac{1}{x^2}(\int_0^x\frac{1}{1-x}-1dx)dx\\ &=-\int_0^x\frac{1}{x^2}ln(1-x)+xdx\\ &=-\int_0^x\frac{ln(1-x)}{x^2}dx-\int_0^x\frac{1}{x}dx\\ &=\frac{ln(1-x)}{x}+1-ln(1-x)\\ \end{aligned} n=1n(n+1)xn=0xn=1n+1xn1dx=0xx21n=1n+1xn+1dx=0xx21(0xn=1xndx)dx=0xx21(0x1x11dx)dx=0xx21ln(1x)+xdx=0xx2ln(1x)dx0xx1dx=xln(1x)+1ln(1x)
    因为 lim ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ n n + 2 = 1 \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{n}{n+2}=1 limnanan+1=limnn+2n=1,所以收敛半径为1。当 x = 0 x=0 x=0时,级数收敛, S ( x ) = 0 S(x)=0 S(x)=0。当 x = 1 x=1 x=1,级数 ∑ n = 1 ∞ 1 n ( n + 1 ) \sum_{n=1}^\infty\frac{1}{n(n+1)} n=1n(n+1)1收敛, S ( x ) = 1 S(x)=1 S(x)=1。当 x = − 1 x=-1 x=1,级数 ∑ n = 1 ∞ ( − 1 ) n n ( n + 1 ) \sum_{n=1}^\infty\frac{(-1)^n}{n(n+1)} n=1n(n+1)(1)n收敛。所以收敛域为 [ − 1 , 1 ] [-1,1] [1,1]
    S ( x ) = { l n ( 1 − x ) x + 1 − l n ( 1 − x ) , x ∈ [ − 1 , 0 ) ⋃ ( 0 , 1 ) 0 , x = 0 , 1 , x = 1 , S(x)=\begin{cases}\frac{ln(1-x)}{x}+1-ln(1-x),x\in[-1,0)\bigcup(0,1)\\0,x=0,\\1,x=1,\\\end{cases} S(x)=xln(1x)+1ln(1x),x[1,0)(0,1)0,x=0,1,x=1,
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值