复杂网络发展
1998年Watts和Strogtz提出了WS小世界模型(Small-world network)
1999年Barabasi和Albert提出无标度网络模型(Scale-free network)
人们发现复杂网络具有一定的社区结构。相同类型节点之间连接较多,构成一个一个的小社区,不同类型节点之间连接较少,但成为沟通不同社区的重要通道,这种连接的不均匀性表明,网络内部存在一定的自然分化
社区定义:
对于社区(community),目前没有明确的定义,常见的是Newman和Gievan提出的:社区是图的一个子图,相比于图的其他部分,其中包含着密集的节点,或者等价地说,如果图一个子图内部的链接数量高于这些子图之间的链接数,我们就可以说这个图含有社区
GN算法的思想很直接,按定义来分割: 因为社区内部边连接较多,节点比较紧密,而社区之间边连接比较少,GN算法思想就是直接去除社区之间的边来分割社区;这里的关键问题是怎么识别社区之间的边呢? 或者说有什么指标能指示边是社区之间边的可能性?
GN算法提出了 边介数 的概念来解决该问题,
边介数: 某条边的边介数是指网络中通过这条边的最短路径的数目
GN算法的基本流程如下:
1)计算网络中各条边的边介数;
2)找出边介数最大的边,并将它移除(如果最大边介数的边不唯一,那么既可以随机挑 选一条边断开也可以将这些边同时断开);
3)重新计算网络中剩余各条边的边介数;
4)重复第2)、3)步,直到网络中所有的边都被移除。
优点:
1、在知道划分社