POJ 1050 To the Max

点击打开链接

To the Max
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 49427 Accepted: 26194

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner: 

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15

题意:题意很容易看懂,就是让你求这个矩阵的一个子矩阵使得它的和最大。

思路:由此我们可以想到一维的序列,如果求一维的子序列,我们可以很容易的得出状态转化方程:

dp[i]=(dp[i-1]>0?dp[i-1]:0)+a[i];

好好理解上边的方程就可以得出下面的代码:一维的:

#include<cstdio>  
#include<iostream>  
#include<climits>  
using namespace std;  
const int MAX=1000010;  
int a[MAX]={0};  
int main()  
{  
    int n,m,maxsum;  
    scanf("%d",&n);  
    while(n--)  
    {  
        maxsum=-INT_MAX;  
        scanf("%d",&m);  
        for(int i=1;i<=m;++i)  
        {  
            scanf("%d",&a[i]);  
            if(a[i-1]>0) a[i]+=a[i-1];  
            if(a[i]>maxsum) maxsum=a[i];  
        }  
        printf("%d\n",maxsum);  
    }  
}  
在这里我们可以解决掉一维的问题了,二维的问题其实就是转化成一维来解决。

不过我这个智商说是说不清楚,来看一下这位大神的解释:

下面扩展到二维的情况:考察下面题目中的例子:

0  -2  -7  0

9   2  -6  2

-4  1  -4   7

-1  8  0   -2

我们分别用i j表示起始行和终止行,遍历所有的可能:

for(i=1;i<=n;i++)

for(j=i;j<=n;j++) {}

我们考察其中一种情况 i=2 j=4,这样就相当与选中了2 3 4三行,求那几列的组合能获得最大值,由于总是 2 3 4行,所以我们可以将这3行”捆绑”起来,变为求 4(9-4-1),11(8+2+1),-10(-6-4+0),7(7+2-2)的最大子段和,ok,问题成功转化为一维的情况!

来,代码贴起来

按大神的思路可以得到以下的代码:(是本题的一个答案)

#include<iostream>  
#include<cstring>  
using namespace std;  
#define N 110
#define inf 0x3f3f3f3f 
int a[N][N];  
int b[N];  
int main(){  
    int n,r;  
    cin>>r;  
    for(int i=1;i<=r;++i)          
        for(int j=1;j<=r;++j)  
        {  
            cin>>a[i][j];  
            a[i][j]+=a[i-1][j];  
        }  
        int max=-1*inf; 
        for(int i=1;i<=r;++i)  
            for(int j=i+1;j<=r;++j)  
            {  
                memset(b,0,sizeof(b));  
                for(int k=1;k<=r;++k)  
                {  
                    if(b[k-1]>=0)  
                        b[k]=b[k-1]+a[j][k]-a[i][k];  
                    else 
                        b[k]=a[j][k]-a[i][k];  
                    if(max<b[k])  
                        max=b[k];  
                }  
            }  
    cout<<max<<endl;
    return 0;
} 

在这里还有一种写法:

dp[i][j][k]表示在从0到i行,从j到k行的最大和

可以得到dp[i][j][k]=max(dp[i-1][j][k]+sum,sum)的状态转化方程,sum是第i行从j列到k列的和由此我们可以得到以下这种写法。思路和上边的一样

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define N 105
#define inf 0x3f3f3f3f

using namespace std;

int a[N][N],dp[N][N][N];
int n;

int main()
{
	int i,j,k;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=n;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}
	int ans=-1*inf;
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=n;j++)
		{
			int sum=0;
			for(k=j;k<=n;k++)
			{
				sum+=a[i][k];
				dp[i][j][k]=max(dp[i-1][j][k]+sum,sum);
				if(dp[i][j][k]>ans) ans=dp[i][j][k];
			}
		}
	}
	printf("%d\n",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值