关于代价函数为凸函数的证明

本文详细证明了在多元线性回归中,当代价函数为二阶可微时,其海塞矩阵为正定矩阵,从而得出代价函数是严格凸函数的结论。通过对代价函数的展开和分析,展示了海塞矩阵半正定的特性,并指出在实际情况下,该矩阵通常为正定,符合严格凸函数的定义。
摘要由CSDN通过智能技术生成

我没能在网上找到关于多元线性回归代价函数为凸函数的证明,就打算自己写一个,如果有错误之处,希望发现的读者能够在评论中指正,感谢。

首先来一条引理:二阶可微的函数为严格凸函数的充分必要条件为该函数的海塞矩阵为正定矩阵。

写出代价函数
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta)=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2 J(θ)=2m1i=1m(hθ(x(i))y(i))2
上式中的 θ \theta θ x ( i ) x^{(i)} x(i) y ( i ) y^{(i)} y(i)均为向量

为方便,我们研究
P ( θ ) = 2 m J ( θ ) = ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 P(\theta)=2mJ(\theta)=\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2 P(θ)=2mJ(θ)=i=1m(hθ(x(i))y(i))2
我们再将平方项展开
P ( θ ) = ∑ i = 1 m ∑ j = 0 n ( x j ( i ) θ j ) 2 + ∑ i = 1 m ∑ j < k 2 x j ( i ) x k ( i ) θ j θ k − ∑ i = 1 m ∑ j = 0 n 2 y ( i ) x j ( i ) θ j + ∑ i = 1 m ( y ( i ) ) 2 P(\theta)=\sum_{i=1}^{m}\sum_{j=0}^{n}(x_j^{(i)}\theta_j)^2+\sum_{i=1}^{m}\sum_{j<k}2x_j^{(i)}x_k^{(i)}\theta_j\theta_k-\sum_{i=1}^{m}\sum_{j=0}^{n}2y^{(i)}x_j^{(i)}\theta_j+\sum_{i=1}^m(y^{(i)})^2 P(θ)=i=1mj=0n(xj(i)θj)2+i=1mj<k2xj(i)xk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值