核函数导出的核矩阵性质的证明

定理中说核矩阵是半正定且对称的。我们先证其对称性:
( κ ( x 1 , x 1 ) κ ( x 1 , x 2 ) κ ( x 1 , x 3 ) ⋯ κ ( x 1 , x n ) κ ( x 2 , x 1 ) κ ( x 2 , x 2 ) κ ( x 2 , x 3 ) ⋯ κ ( x 2 , x n ) ⋮ ⋮ ⋮ ⋱ ⋮ κ ( x n , x 1 ) κ ( x n , x 2 ) κ ( x n , x 3 ) ⋯ κ ( x n , x n ) ) \begin{pmatrix} \kappa(x_1,x_1) & \kappa(x_1,x_2) & \kappa(x_1,x_3) & \cdots & \kappa(x_1,x_n) \\ \kappa(x_2,x_1) & \kappa(x_2,x_2) & \kappa(x_2,x_3) & \cdots & \kappa(x_2,x_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \kappa(x_n,x_1) & \kappa(x_n,x_2) & \kappa(x_n,x_3) & \cdots & \kappa(x_n,x_n) \\ \end{pmatrix} κ(x1,x1)κ(x2,x1)κ(xn,x1)κ(x1,x2)κ(x2,x2)κ(xn,x2)κ(x1,x3)κ(x2,x3)κ(xn,x3)κ(x1,xn)κ(x2,xn)κ(xn,xn) κ ( x i , x j ) \kappa(x_i,x_j) κ(xi,xj)按定义展开得到 κ ( x i , x j ) = ϕ ( x i ) T ϕ ( x j ) \kappa(x_i,x_j)=\phi(x_i)^T\phi(x_j) κ(xi,xj)=ϕ(xi)Tϕ(xj)由于 κ ( x i , x j ) \kappa(x_i,x_j)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值