定理中说核矩阵是半正定且对称的。我们先证其对称性:
( κ ( x 1 , x 1 ) κ ( x 1 , x 2 ) κ ( x 1 , x 3 ) ⋯ κ ( x 1 , x n ) κ ( x 2 , x 1 ) κ ( x 2 , x 2 ) κ ( x 2 , x 3 ) ⋯ κ ( x 2 , x n ) ⋮ ⋮ ⋮ ⋱ ⋮ κ ( x n , x 1 ) κ ( x n , x 2 ) κ ( x n , x 3 ) ⋯ κ ( x n , x n ) ) \begin{pmatrix} \kappa(x_1,x_1) & \kappa(x_1,x_2) & \kappa(x_1,x_3) & \cdots & \kappa(x_1,x_n) \\ \kappa(x_2,x_1) & \kappa(x_2,x_2) & \kappa(x_2,x_3) & \cdots & \kappa(x_2,x_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \kappa(x_n,x_1) & \kappa(x_n,x_2) & \kappa(x_n,x_3) & \cdots & \kappa(x_n,x_n) \\ \end{pmatrix} ⎝⎜⎜⎜⎛κ(x1,x1)κ(x2,x1)⋮κ(xn,x1)κ(x1,x2)κ(x2,x2)⋮κ(xn,x2)κ(x1,x3)κ(x2,x3)⋮κ(xn,x3)⋯⋯⋱⋯κ(x1,xn)κ(x2,xn)⋮κ(xn,xn)⎠⎟⎟⎟⎞将 κ ( x i , x j ) \kappa(x_i,x_j) κ(xi,xj)按定义展开得到 κ ( x i , x j ) = ϕ ( x i ) T ϕ ( x j ) \kappa(x_i,x_j)=\phi(x_i)^T\phi(x_j) κ(xi,xj)=ϕ(xi)Tϕ(xj)由于 κ ( x i , x j ) \kappa(x_i,x_j)
核函数导出的核矩阵性质的证明
最新推荐文章于 2024-01-09 01:22:08 发布