针对新手入门的Scikit-Learn简介 如何选择合适的算法 读书笔记_《Python数据分析与挖掘实战》

Table of Contents

 

Scikit-Learn依赖库

安装指令

检查是否安装成功:

接口

实例数据集

扩展阅读:如何选择合适的算法


Scikit-Learn依赖库

NumPy, SciPy, Matplotlib

安装指令

pip install scikit-learn

检查是否安装成功:

#! /usr/bin/env python
# -*- coding: utf-8 -*-

from sklearn.linear_model import LinearRegression   #导入线性回归模型
model = LinearRegression()
print(model)

接口

  1. 所有模型提供的接口:
    1. model.fit(): 训练模型
    2. 对于监督模型来说是fit(X,y),对于非监督模型是fit(X)
  2. 监督模型提供的接口:
    1. model.predict(X_new):预测新样本
    2. model.predict_proba(X_new):预测概率,仅对某些模型有用(比如LR)
    3. model.score():得分越高,fit越好
  3. 非监督模型提供的接口:
    1. model.transform(X_new):从数据中学到新的“基空间”
    2. model.fit_transform():从数据中学到新的基并将这个数据按照这组“基”进行转换

实例数据集

Scikit-Learn本身提供一些实例数据,比较常见的:

  1. 安德森鸢尾花卉数据集Iris
  2. 手写图像数据集MNIST
  3. 世界名人图片数据集Labled Face Worldwide

以上摘自我的读书笔记_《Python数据分析与挖掘实战》

 

扩展阅读:如何选择合适的算法

更多可参考https://scikit-learn.org/stable/tutorial/machine_learning_map/

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值