[紫书CH10] 例题10-5:GCD等于XOR(数论、找规律、算法优化、UVa12716)

紫书题解汇总:[紫书CH0] 《算法竞赛入门经典》(第2版) 题解目录

1. 题目来源

链接:UVA12716 GCD XOR

2. 题目说明

在这里插入图片描述

中文描述:

在这里插入图片描述

3. 题目解析

方法一:数论+找规律+算法优化

例题10-5 GCD等于XOR(GCD XOR, ACM/ICPC Dhaka 2013, UVa12716)

按照书上的提示,记 g c d ( a , b ) = a ⊕ b = c gcd(a,b)=a\oplus b =c gcd(a,b)=ab=c,那么根据异或的性质来讲,由 a ⊕ b = c a\oplus b =c ab=c 可得 a ⊕ c = b a \oplus c =b ac=b,那么就可以通过枚举 ac 计算得到 b 再验证是否满足 g c d ( a , b ) = c gcd(a,b)=c gcd(a,b)=c,就能够得到答案了。且由于 ca 的约数,那么就相同于素数筛算法了,那这个时间复杂度就为 ∑ i = 1 n n i = O ( n l o g n ) \sum_{i=1}^n\frac{n}{i}=O(nlogn) i=1nin=O(nlogn)gcd 时间复杂度为 O ( l o g n ) O(logn) O(logn),则总的时间复杂度为 O ( n ( l o g n ) 2 ) O(n(logn)^2) O(n(logn)2)

这个算法仍存在优化点有上述算法打印一些结果满足 g c d ( a , b ) = a ⊕ b = c gcd(a,b)=a\oplus b =c gcd(a,b)=ab=c 的三元组 ( a , b , c ) (a,b,c) (a,b,c)能够发现规律为 c = a − b c=a-b c=ab。关于这个规律的证明如下:不难发现 a − b ≤ a ⊕ b 且 a − b ≥ c a-b\leq a \oplus b 且 a-b \geq c abababc 若存在 c c c 使得 a − b > c a-b>c ab>c,则 c < a − b ≤ a ⊕ b c <a-b \leq a \oplus b c<abab,与 c = a ⊕ b c=a \oplus b c=ab 矛盾。

那么现在依旧枚举 a 、 c a、c ac,计算 b = a − c b=a-c b=ac,则 g c d ( a , b ) = g c d ( a , a − c ) = c gcd(a,b)=gcd(a,a-c)=c gcd(a,b)=gcd(a,ac)=c,因此仅验证 c = a ⊕ b c= a \oplus b c=ab 即可,时间复杂度降为 O ( n l o g n ) O(nlogn) O(nlogn)

具体就是开辟两个 MAXN = 30000000; 一个 cnt 用来放置当前 indexa 时构成的满足要求的整数对。第一层循环遍历 c 第二层循环遍历 a 由于满足 c 一定是 a 的约数,所以 a 初始值可设为 2c 步长增量也为 c。若满足整数对条件,则 ++cnt[a]。循环完毕后,统计整数 n 的整数对数,即需要将前面的 cnt 累加起来即可。

参见代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;
// 3e7 误写为3e8时本地竟然无法通过,不能正常打印,2e8可以,3e8报链接错误
const int MAXN = 30000000;
int cnt[MAXN + 50], sum[MAXN + 50];

void solve() {
	memset(cnt, 0, sizeof(cnt));
	for (int c = 1; c <= MAXN; ++c) {
		for (int a = c * 2; a <= MAXN; a += c) {
			int b = a - c;
			if (c == (a ^ b)) ++cnt[a];
		}
	}
	sum[0] = 0;
	for (int i = 1; i <= MAXN; ++i) sum[i] = sum[i - 1] + cnt[i];
}

int main() {
	solve();
	int T, n, tmp = 0;
	cin >> T;
	while (T--) {
		scanf("%d", &n);
		printf("Case %d: %d\n", ++tmp, sum[n]);
	}
	return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值