文章目录
0. 前言
相关:
原题:
1. 数字三角形+模板题
本题和[线性dp] 方格取数(数字三角形模型)一模一样。且是 NOIP2008
年提高组真题,和 00 年的题撞车了。
看了大佬题解,受了启发。写完代码又细想一下,按照贪心的思路来讲,每个点的数值非负。所有能够取数字就尽量让他取数字,不要造成路径相交的情况,若有路径相交情况,我们可以通过调整使其路径不相交,且答案不减小,故证明最优路径一定不相交。
事实上,在二维图中,若两条路径不相交,则一条路径必然在另一条路径的上方。
当最优解为相交的路径的情况时,我们可以采用翻转部分相交路径的方式,使其变得不相交,在此就是我走的路,你来走,别到我的上方、下方去,咱俩各占一边。
这样调整的总和是不变的(因为取点还是不变的)。
然后针对相交部分,可调整为绕道取有数字的格子,这样结果一定不会变差。一直这样调整下去,就能将最优解有相交的部分,全部调整为不相交的路径,且结果一定不变差。故可证明最优路径一定不相交。
结论:不论是在 [线性dp] 方格取数(数字三角形模型) 中,还是在本题中,最优解永远不会由两段相交的路径组成。
那么代码中的相关位置的判断在事实上是起到了上述的确定是让蓝色还是红色走虚线的效果。
代码:
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 15;
int n;
int w[N][N];
int f[N + N][N][N];
int main() {
cin >> n;
int a, b, c;
while (cin >> a >> b >> c, a || b || c) w[a][b] = c;
for (int k = 2; k <= n + n; ++k)
for (int i1 = 1; i1 <= n; ++i1)
for (int i2 = 1; i2 <= n; ++i2) {
int j1 = k - i1, j2 = k - i2;
if (j1 >= 1 && j1 <= n && j2 >= 1 && j2 <= n) {
int t = w[i1][j1];
if (i1 != i2) t += w[i2][j2];
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1 - 1][i2 - 1] + t);
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1 - 1][i2] + t);
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1][i2 - 1] + t);
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1][i2] + t);
}
}
cout << f[n + n][n][n] << endl;
return 0;
}
这还看到一个大佬用 贪心+四维 写的题解。也是很巧妙的思路。很值得开拓思维,学习!
大佬代码:
#include<bits/stdc++.h>
using namespace std;
int n,m;
int v[55][55],f[55][55][55][55];
// (i,j) 是第一条路径坐标 (k,l) 是第二条
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) scanf("%d",&v[i][j]);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
for(int k=1;k<=n;k++)
{
for(int l=j+1;l<=m;l++)
{
int w1=f[i-1][j][k][l-1],w2=f[i-1][j][k-1][l];
int w3=f[i][j-1][k][l-1],w4=f[i][j-1][k-1][l];
f[i][j][k][l]=max(w1,max(w2,max(w3,w4)))+v[i][j]+v[k][l];
//我们用贪心思想可得两条路径肯定不相交 (能取数就取数)
//那么令 l=(j+1,m) 即满足了此条件 (保证了第二条路线一定在第一条路线下面)
//不用判重因为不会重两条路径不相交
}
}
}
}
printf("%d",f[n][m-1][n-1][m]);
//dp 是达不到 (n,m) 的,但 (n,m) 等价于 (n-1,m),(n,m-1) (因为 v(n,m)==0)
return 0;
}