[FloodFill] aw1098. 城堡问题(bfs+FloodFill+模板题)

1. 题目来源

链接:1098. 城堡问题

2. 题目解析

FloodFill 第二种,求连通块中块的个数。

样例展示,y总真是配色带师hh:
在这里插入图片描述

很明显,本题也是找连通块,并且需要统计每个连通块中个数,求个最大值即可。

主要还是寻找连通性质本题是 4 连通,且墙的存在是重要的连通性质,能走到下一块一定是方向上没有墙。

用 4 位二进制表示 4 个方向是否有墙存在,方向数组设的时候要对应到二进制位上,移位判断的时候要对应起来,在这 debug 了很长时间…


时间复杂度: O ( n m ) O(nm) O(nm)

空间复杂度: O ( n m ) O(nm) O(nm)


#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>

using namespace std;

typedef pair<int, int> PII;

const int N = 55;

int n, m;
int g[N][N];
bool st[N][N];
PII q[N * N];

int dx[4] = {0, -1, 0, 1}, dy[4] = {-1, 0, 1, 0};       // 二进制位,西0,北1,东2,南3

int bfs(int sx, int sy) {
    int hh = 0, tt = 0;
    q[0] = {sx, sy};
    st[sx][sy] = true;
    
    int area = 0;
    while (hh <= tt) {
        auto t = q[hh ++ ];
        area ++ ;

        int x = t.first, y = t.second;
        for (int i = 0; i < 4; i ++ ) {
            int a = x + dx[i], b = y + dy[i];
            if (a < 0 || a >= n || b < 0 || b >= m) continue;
            if (st[a][b]) continue;
            if (g[x][y] >> i & 1) continue;         // 重要一步,判断其是否能走过去

            q[ ++ tt ] = {a, b};
            st[a][b] = true;
        }
    }

    return area;

}

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            scanf("%d", &g[i][j]);

    int cnt = 0, area = 0;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ ) {
            if (!st[i][j]) {
                area = max(area, bfs(i, j));
                cnt ++ ;
            }
        }

    printf("%d\n", cnt);
    printf("%d\n", area);

    return 0;
}
Floodfill.py 是一个常用的图像处理算法,用于填充图像中的区域。它可以根据指定的起始点和填充颜色,将相邻的像素点进行颜色替换,直到达到边界或者遇到不同的颜色。这个算法在图像编辑、计算机视觉和图形处理等领域有广泛的应用。 它可以用于创建图像编辑工具中的填充功能,比如在画图软件中选择一个区域并进行填充。也可以用于图像分割,将图像中的不同区域进行分离。 在 Python 中,你可以使用 OpenCV 或者 PIL(Pillow) 等库来实现 Floodfill 算法。这些库提供了相关的函数和方法,可以方便地对图像进行操作。 以下是一个简单的示例代码,使用 OpenCV 库来实现 Floodfill 算法: ```python import cv2 # 加载图像 image = cv2.imread('image.jpg') # 设置起始点 start_point = (100, 100) # 设置填充颜色 fill_color = (0, 255, 0) # 绿色 # 设置填充范围 lo_diff = (10, 10, 10) up_diff = (10, 10, 10) # 执行 Floodfill cv2.floodFill(image, None, start_point, fill_color, lo_diff, up_diff) # 显示结果 cv2.imshow('Floodfill', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码会加载一张图像,然后从指定的起始点开始进行 Floodfill,将相邻的像素点替换为指定的填充颜色。最后,将结果显示出来。 当然,这只是一个简单的示例,实际应用中可能还需要对图像进行一些预处理和后处理的操作。你可以根据自己的需求进行调整和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值