【题解】城堡

本文介绍了两种解决城堡攻防问题的算法:动态规划DP和贪心策略。动态规划中,通过维护p[i]表示与i相连的最后一个城堡,并计算f[i][j]表示攻打完i个城堡后剩余j个士兵的最大驻守价值。贪心策略则使用优先队列实现反悔型贪心,当攻打后续城堡士兵不足时,撤销之前的驻守以增加士兵数量,总时间复杂度为O(nlogn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


解法一:动态规划DP

我们容易想到小贪心,如果要驻守第 i i i 个城堡,应选择最后那个与 i i i 有路径的城堡。反证:如果有两条路 u 1 → v , u 2 → v ( u 2 > u 1 ) u_1→v,u_2→v(u_2>u_1) u1v,u2v(u2>u1),我们选择在攻打完成 u 1 u_1 u1 城堡时就驻守 v v v,和在 u 2 u_2 u2 的价值没区别,而且这样做可能导致在攻打 u 1 + 1... u 2 u_1+1...u_2 u1+1...u2 的城堡时出现士兵不足的现象。

p [ i ] p[i] p[i] 为最后一个与 i i i 相连的城堡编号。对于每条路径 u , v u,v u,v,更新 p [ v ] = m a x { u } p[v]=max\{u\} p[v]=max{ u},这样一来就不用考虑判重的情况了。

f [ i ] [ j ] f[i][j]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值