[M二分] lc153. 寻找旋转排序数组中的最小值(二分+边界情况+好题)

1. 题目来源

链接:153. 寻找旋转排序数组中的最小值

2. 题目解析

一道不错的二分题目。有两种写法,但两种写法的边界情况各不相同,需要考虑清楚。

思路:

  • 数组中可能是完全升序的,也可能是前半段完全大于后半段的旋转的。
  • 升序的很简单,只需要考虑 nums[0] < nums.back() 即可。
  • 关注这个旋转的,可知,nums[0] 就是完全大于后半段的,同理 nums.back() 也是完全小于后半段的。
  • 可以在 [l, r] 区间中取 mid,如果 nums[mid] > nums.back() 说明 mid 落在前半段,且 mid 不包含答案,则可以让 l = mid+1,否则,r = mid 即可。

上述方式使用 nums[mid]>nums.back() 进行判断的。如果写成 nums[mid] < nums[0] 实际上也能判断,此时应当让 r=mid,因为此时的 mid 落在右半段,且让 l=mid+1 即可。
但这样忽略了一个情况,即数组为升序的样例3 这个情况。所以可以通过特判去解决,主体代码仅考虑数组为旋转数组的情况。

这也提示我们一个技巧,可以通过一定的边界、情况的特判,将这些易出错的点特殊处理,再去考虑主体代码的实现。避免想太久。

针对一些整数二分的边界,需要将等号也要考虑清楚。


  • 时间复杂度 O ( log ⁡ n ) O(\log n) O(logn)
  • 空间复杂度 O ( 1 ) O(1) O(1)

简洁写法:

class Solution {
public:
    int findMin(vector<int>& nums) {
        int n = nums.size();
        int l = 0, r = n - 1;
        while (l < r) {
            int mid = l + r >> 1;
            if (nums[mid] > nums.back()) l = mid + 1;
            else r = mid;
        }

        return nums[l];
    }
};

注意特判:

这里的特判还是蛮坑的。关于 mid 有下面的几种写法:

  • nums[mid] >= nums[0]
  • nums[mid] < nums[0]
  • nums[mid] > nums[0] 这个是无解的。因为此时 mid 其实位于第一段中,且隐藏着 nums[mid]==nums[0] 这个条件。理论上应该让 l = mid + 1。但是一开始 mid=0 的情况下,nums[mid]=nums[0] == nums[0],就会走到 r = mid 这个逻辑里面去,但此时 r 不应该等于这个 nums[0] 这个非法值,它并不在答案所包含的区间内。
    • 故,这个写法,找不到最小的起始点。
    • 反而能找到最大的这个点。
    • 反例, [2, 1]。一开始 nums[mid]=nums[0]=2,如果 r=mid 的话,则造成了错误的区间更新。此时 l=r=0,就有问题了。
  • nums[mid] <= nums[0]
class Solution {
public:
    int findMin(vector<int>& nums) {
        if (nums.back() > nums[0]) return nums[0];
        int l = 0, r = nums.size() - 1;
        while (l < r)
        {
            int mid = l + r >> 1;
            // 这里的等号必须要加上。因为 nums[0] 不是一个可选答案
            // 不能将 r=mid 包含 nums[0]
            if (nums[mid] >= nums[0]) l = mid + 1;  
            else r = mid;
        }
        return nums[l];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值