第一篇文章,mnist的识别相关

本文作者在反思中意识到研究不足,通过阅读论文了解到CapsNet和卷积神经网络的深入应用。文章讨论了Max Pooling层的作用,CapsNet如何改进CNN,并提及了DropConnect和多列深度神经网络在MNIST识别中的应用,同时指出数据增强策略如旋转和缩放对提高识别率的重要性。
摘要由CSDN通过智能技术生成

早早注册了csdn,结果研究生都快毕业了还没有写过一篇文章,平时碰到问题也就是百度谷歌一下,也没有好好把问题记下来,最近反思了一下,感觉自己真还是不配被称作一个合格的研究人员。

最近因为项目的原因,需要对mnist的识别率再提高一点,之前自己随随便便改改网络结构,效果居然还不错,最近看了两篇论文,才感觉到自己一直在闭门造车。分享几篇文章,略微做一些解读,可能有些错误或者偏差,希望大家谅解。

文章借鉴了知乎专栏文章的一些内容,这里放一下链接:https://zhuanlan.zhihu.com/p/31262148

1.Dynamic Routing Between Capsules

hinton的capsNet提出都已经快一年了,我居然没有好好的读过一点。文章建议替换CNN中的max pooling层,老师之前经常问我这个pooling层究竟是什么,有什么用,以前都是糊弄过去,现在想想姜还是老的辣,正紧的研究人员直觉非常的准。因为卷积神经网络在底层时使用的感受野只能对局部提取特征,但是我们在高层需要对整个图像的较大的区域提取出高层特征,这时候我们引入了pooling,pooling叫做聚合层,聚合的是啥玩意呢,我觉得是把一片区域的特征聚合到一个点上,这样我们用一个点表示之前一个区域的特征,顺便减小了输入的数据的空间大小,这样我们利用同样大小的感受野,就能感受到比之前更大的图片的一个区域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值