平稳过程题目笔记

1、假设 { X t } \{X_t\} {Xt} 为平稳过程,定义 Y t = X t Y_t=X_t Yt=Xt,当 t t t 为奇数时; Y t = X t + 3 Y_t=X_t+3 Yt=Xt+3,当 t t t 为偶数时,回答下列问题:
( 1 ) (1) 1 证明 C o v ( Y t , Y t + k ) Cov(Y_t,Y_{t+k}) Cov(Yt,Yt+k) t t t 无关只与 k k k 有关;
( 2 ) (2) 2 { Y t } \{Y_t\} {Yt} 是否为平稳过程。
证明:
( 1 ) (1) 1 因为 Y t − E ( Y t ) = X t − E ( X t ) , ∀ t \quad Y_t-E(Y_t)=X_t-E(X_t),\quad \forall t YtE(Yt)=XtE(Xt),t
所以 C o v ( Y t , Y t + k ) = E ( Y t − E ( Y t ) ) ( Y t + k − E ( Y t + k ) ) = E ( X t − E ( X t ) ) ( X t + k − E ( X t + k ) ) = C o v ( X t , X t + k ) Cov(Y_t,Y_{t+k})=E(Y_t-E(Y_t))(Y_{t+k}-E(Y_{t+k})) \\ \quad \qquad \qquad \qquad= E(X_t-E(X_t))(X_{t+k}-E(X_{t+k})) \\ =Cov(X_t,X_{t+k}) \quad Cov(Yt,Yt+k)=E(YtE(Yt))(Yt+kE(Yt+k))=E(XtE(Xt))(Xt+kE(Xt+k))=Cov(Xt,Xt+k) ( 2 ) (2) 2 t t t 为奇数时, E ( Y t ) = E ( X t ) = μ x E(Y_t)=E(X_t)=\mu_x E(Yt)=E(Xt)=μx
t t t 为偶数时, E ( Y t ) = E ( X t + 3 ) = μ x + 3 E(Y_t)=E(X_t+3)=\mu_x+3 E(Yt)=E(Xt+3)=μx+3;即 E ( Y t ) E(Y_{t}) E(Yt) 的值与 t t t 有关,因此不是常数,故 { Y t } \{Y_t\} {Yt} 不是平稳过程。

2、考虑无穷阶移动平均过程 X t = Z t + ϕ Z t − 1 + ϕ 2 Z t − 2 + ⋯ X_t=Z_t+\phi Z_{t-1}+\phi^2 Z_{t-2}+\cdots Xt=Zt+ϕZt1+ϕ2Zt2+,回答下列问题:
( 1 ) (1) 1 验证 { X t } \{X_t\} {Xt} 为平稳过程,其中 ∣ ϕ ∣ < 1 |\phi|<1 ϕ<1
( 2 ) (2) 2 计算其 A C F ACF ACF
( 3 ) (3) 3 验证 { X t } \{X_t\} {Xt} 满足 X t = ϕ X t − 1 + Z t . X_t=\phi X_{t-1}+Z_t. Xt=ϕXt1+Zt. 我们把 { X t } \{X_t\} {Xt} 称为 1 1 1 阶自回归过程,记为 A R ( 1 ) . AR(1). AR(1).
解:
( 1 ) (1) 1 因为 { Z t } ∼ W N ( 0 , σ 2 ) \{Z_t\}\sim WN(0,\sigma^2) {Zt}WN(0,σ2),则 E ( X t ) = E ( Z t + ϕ Z t − 1 + ϕ 2 Z t − 2 + ⋯   ) = 0 E(X_t)=E(Z_t+\phi Z_{t-1}+\phi^2 Z_{t-2}+\cdots)=0 E(Xt)=E(Zt+ϕZt1+ϕ2Zt2+)=0 γ ( k ) = C o v ( X t , X t + k ) = ∑ i = 0 + ∞ ϕ i ϕ i + k σ Z 2 = ϕ k 1 − ϕ 2 σ Z 2 , ( k ≥ 0 ) \gamma(k)=Cov(X_t,X_{t+k})=\sum_{i=0}^{+\infty}\phi^i\phi^{i+k}\sigma^2_{Z}=\frac{\phi^{k}}{1-\phi^2}\sigma^2_Z,\quad (k\geq0) γ(k)=Cov(Xt,Xt+k)=i=0+ϕiϕi+kσZ2=1ϕ2ϕkσZ2,(k0) k = 0 k=0 k=0 时, γ ( 0 ) = V a r ( X t ) = σ Z 2 1 − ϕ 2 < + ∞ \gamma(0)=Var(X_t)=\frac{\sigma^2_Z}{1-\phi^2}<+\infty γ(0)=Var(Xt)=1ϕ2σZ2<+,故 { X t } \{X_t\} {Xt} 为平稳过程。
( 2 ) (2) 2 A C F : ρ k = γ ( k ) γ ( 0 ) = ϕ k , ( ∣ ϕ ∣ < 1 , k ≥ 0 ) ACF:\rho_k=\frac{\gamma(k)}{\gamma(0)}=\phi^k,\quad (|\phi|<1,k\geq0) ACFρk=γ(0)γ(k)=ϕk,(ϕ<1,k0) ( 3 ) (3) 3 X t = Z t + ϕ Z t − 1 + ϕ 2 Z t − 2 + ⋯ = Z t + ϕ ( Z t − 1 + ϕ Z t − 2 + ⋯   ) = Z t + ϕ X t − 1 \begin{align*}X_t&=Z_t+\phi Z_{t-1}+\phi^2 Z_{t-2}+\cdots \\ &=Z_t+\phi(Z_{t-1}+\phi Z_{t-2}+\cdots) \\ &=Z_t +\phi X_{t-1} \end{align*} Xt=Zt+ϕZt1+ϕ2Zt2+=Zt+ϕ(Zt1+ϕZt2+)=Zt+ϕXt1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值