1、假设
{
X
t
}
\{X_t\}
{Xt} 为平稳过程,定义
Y
t
=
X
t
Y_t=X_t
Yt=Xt,当
t
t
t 为奇数时;
Y
t
=
X
t
+
3
Y_t=X_t+3
Yt=Xt+3,当
t
t
t 为偶数时,回答下列问题:
(
1
)
(1)
(1) 证明
C
o
v
(
Y
t
,
Y
t
+
k
)
Cov(Y_t,Y_{t+k})
Cov(Yt,Yt+k) 与
t
t
t 无关只与
k
k
k 有关;
(
2
)
(2)
(2)
{
Y
t
}
\{Y_t\}
{Yt} 是否为平稳过程。
证明:
(
1
)
(1)
(1) 因为
Y
t
−
E
(
Y
t
)
=
X
t
−
E
(
X
t
)
,
∀
t
\quad Y_t-E(Y_t)=X_t-E(X_t),\quad \forall t
Yt−E(Yt)=Xt−E(Xt),∀t
所以
C
o
v
(
Y
t
,
Y
t
+
k
)
=
E
(
Y
t
−
E
(
Y
t
)
)
(
Y
t
+
k
−
E
(
Y
t
+
k
)
)
=
E
(
X
t
−
E
(
X
t
)
)
(
X
t
+
k
−
E
(
X
t
+
k
)
)
=
C
o
v
(
X
t
,
X
t
+
k
)
Cov(Y_t,Y_{t+k})=E(Y_t-E(Y_t))(Y_{t+k}-E(Y_{t+k})) \\ \quad \qquad \qquad \qquad= E(X_t-E(X_t))(X_{t+k}-E(X_{t+k})) \\ =Cov(X_t,X_{t+k}) \quad
Cov(Yt,Yt+k)=E(Yt−E(Yt))(Yt+k−E(Yt+k))=E(Xt−E(Xt))(Xt+k−E(Xt+k))=Cov(Xt,Xt+k)
(
2
)
(2)
(2) 当
t
t
t 为奇数时,
E
(
Y
t
)
=
E
(
X
t
)
=
μ
x
E(Y_t)=E(X_t)=\mu_x
E(Yt)=E(Xt)=μx;
当
t
t
t 为偶数时,
E
(
Y
t
)
=
E
(
X
t
+
3
)
=
μ
x
+
3
E(Y_t)=E(X_t+3)=\mu_x+3
E(Yt)=E(Xt+3)=μx+3;即
E
(
Y
t
)
E(Y_{t})
E(Yt) 的值与
t
t
t 有关,因此不是常数,故
{
Y
t
}
\{Y_t\}
{Yt} 不是平稳过程。
2、考虑无穷阶移动平均过程
X
t
=
Z
t
+
ϕ
Z
t
−
1
+
ϕ
2
Z
t
−
2
+
⋯
X_t=Z_t+\phi Z_{t-1}+\phi^2 Z_{t-2}+\cdots
Xt=Zt+ϕZt−1+ϕ2Zt−2+⋯,回答下列问题:
(
1
)
(1)
(1) 验证
{
X
t
}
\{X_t\}
{Xt} 为平稳过程,其中
∣
ϕ
∣
<
1
|\phi|<1
∣ϕ∣<1;
(
2
)
(2)
(2) 计算其
A
C
F
ACF
ACF;
(
3
)
(3)
(3) 验证
{
X
t
}
\{X_t\}
{Xt} 满足
X
t
=
ϕ
X
t
−
1
+
Z
t
.
X_t=\phi X_{t-1}+Z_t.
Xt=ϕXt−1+Zt. 我们把
{
X
t
}
\{X_t\}
{Xt} 称为
1
1
1 阶自回归过程,记为
A
R
(
1
)
.
AR(1).
AR(1).
解:
(
1
)
(1)
(1) 因为
{
Z
t
}
∼
W
N
(
0
,
σ
2
)
\{Z_t\}\sim WN(0,\sigma^2)
{Zt}∼WN(0,σ2),则
E
(
X
t
)
=
E
(
Z
t
+
ϕ
Z
t
−
1
+
ϕ
2
Z
t
−
2
+
⋯
)
=
0
E(X_t)=E(Z_t+\phi Z_{t-1}+\phi^2 Z_{t-2}+\cdots)=0
E(Xt)=E(Zt+ϕZt−1+ϕ2Zt−2+⋯)=0 且
γ
(
k
)
=
C
o
v
(
X
t
,
X
t
+
k
)
=
∑
i
=
0
+
∞
ϕ
i
ϕ
i
+
k
σ
Z
2
=
ϕ
k
1
−
ϕ
2
σ
Z
2
,
(
k
≥
0
)
\gamma(k)=Cov(X_t,X_{t+k})=\sum_{i=0}^{+\infty}\phi^i\phi^{i+k}\sigma^2_{Z}=\frac{\phi^{k}}{1-\phi^2}\sigma^2_Z,\quad (k\geq0)
γ(k)=Cov(Xt,Xt+k)=i=0∑+∞ϕiϕi+kσZ2=1−ϕ2ϕkσZ2,(k≥0) 当
k
=
0
k=0
k=0 时,
γ
(
0
)
=
V
a
r
(
X
t
)
=
σ
Z
2
1
−
ϕ
2
<
+
∞
\gamma(0)=Var(X_t)=\frac{\sigma^2_Z}{1-\phi^2}<+\infty
γ(0)=Var(Xt)=1−ϕ2σZ2<+∞,故
{
X
t
}
\{X_t\}
{Xt} 为平稳过程。
(
2
)
(2)
(2)
A
C
F
:
ρ
k
=
γ
(
k
)
γ
(
0
)
=
ϕ
k
,
(
∣
ϕ
∣
<
1
,
k
≥
0
)
ACF:\rho_k=\frac{\gamma(k)}{\gamma(0)}=\phi^k,\quad (|\phi|<1,k\geq0)
ACF:ρk=γ(0)γ(k)=ϕk,(∣ϕ∣<1,k≥0)
(
3
)
(3)
(3)
X
t
=
Z
t
+
ϕ
Z
t
−
1
+
ϕ
2
Z
t
−
2
+
⋯
=
Z
t
+
ϕ
(
Z
t
−
1
+
ϕ
Z
t
−
2
+
⋯
)
=
Z
t
+
ϕ
X
t
−
1
\begin{align*}X_t&=Z_t+\phi Z_{t-1}+\phi^2 Z_{t-2}+\cdots \\ &=Z_t+\phi(Z_{t-1}+\phi Z_{t-2}+\cdots) \\ &=Z_t +\phi X_{t-1} \end{align*}
Xt=Zt+ϕZt−1+ϕ2Zt−2+⋯=Zt+ϕ(Zt−1+ϕZt−2+⋯)=Zt+ϕXt−1