# 【时间序列分析】01. 时间序列·平稳序列

17 篇文章 22 订阅

## 时间序列 · 平稳序列

### 时间序列的定义

X t = T t + S t + R t   ,      t = 1 , 2 , . . . X_t=T_t+S_t+R_t \ , \ \ \ \ t=1,2,...

### 平稳序列的定义

(1) 对任何 t ∈ N t\in\N E ( X t 2 ) < ∞ {\rm E}(X_t^2)<\infty

(2) 对任何 t ∈ N t\in\N E ( X t ) = μ {\rm E}(X_t)=\mu

(3) 对任何 t ,   s ∈ N t,\,s\in\N E [ ( X t − μ ) ( X s − μ ) ] = γ t − s {\rm E}[(X_t-\mu)(X_s-\mu)]=\gamma_{t-s}

C o v ( X t ,   X s ) = C o v ( X t + k ,   X s + k ) = γ t − s {\rm Cov}(X_t,\,X_s)={\rm Cov}(X_{t+k},\,X_{s+k})=\gamma_{t-s}

(1) 对称性： γ k = γ − k \gamma_k=\gamma_{-k} ，对所有 k ∈ Z k\in\Z 成立；

(2) 非负定性：对任何 n ∈ N + n\in\N_+ n n 阶自协方差矩阵
Γ n = ( γ k − j ) k ,   j = 1 n = [ γ 0 γ 1 ⋯ γ n − 1 γ 1 γ 0 ⋯ γ n − 2 ⋮ ⋮ ⋮ γ n − 1 γ n − 2 ⋯ γ 0 ] \boldsymbol{\Gamma}_n=(\gamma_{k-j})_{k,\,j=1}^n=\left[ \begin{array}{cccc} \gamma_0 & \gamma_1 & \cdots & \gamma_{n-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{n-2} \\ \vdots & \vdots & & \vdots \\ \gamma_{n-1} & \gamma_{n-2} & \cdots & \gamma_0 \\ \end{array} \right]

(3) 有界性： ∣ γ k ∣ ≤ γ 0 |\gamma_k|\leq\gamma_0 ，对所有 k ∈ Z k\in\Z 成立。

a n T Γ n a n = ∑ i = 1 n ∑ j = 1 n a i a j γ i − j = ∑ i = 1 n ∑ j = 1 n a i a j E [ ( X i − μ ) ( X i − μ ) ] = E ( ∑ i = 1 n ∑ j = 1 n a i a j ( X i − μ ) ( X i − μ ) ) = E ( ∑ i = 1 n a i ( X i − μ ) ) 2 = V a r ( ∑ i = 1 n a i ( X i − μ ) ) ≥ 0. \begin{aligned} \boldsymbol{a}_n^{\rm T}\boldsymbol{\Gamma}_n\boldsymbol{a}_n &=\sum_{i=1}^n\sum_{j=1}^na_ia_j\gamma_{i-j} \\ &=\sum_{i=1}^n\sum_{j=1}^na_ia_j{\rm E}[(X_{i}-\mu)(X_{i}-\mu)] \\ &={\rm E}\left(\sum_{i=1}^n\sum_{j=1}^na_ia_j(X_{i}-\mu)(X_{i}-\mu)\right) \\ &={\rm E}\left(\sum_{i=1}^na_i(X_i-\mu)\right)^2 \\ &={\rm Var}\left(\sum_{i=1}^na_i(X_i-\mu)\right)\geq0 . \end{aligned}

∣ γ k ∣ = ∣ E ( Y k + 1 Y 1 ) ∣ ≤ E Y k + 1 2 Y 1 2 = γ 0 . |\gamma_k|=|{\rm E}(Y_{k+1}Y_1)|\leq\sqrt{{\rm E}Y_{k+1}^2Y_1^2}=\gamma_0.

Y t = X t − μ γ 0   ,      t ∈ Z Y_t=\frac{X_t-\mu}{\displaystyle\sqrt{\gamma_0}}\ , \ \ \ \ t\in\Z

ρ k = γ k γ 0   ,      k ∈ Z \rho_k=\frac{\gamma_k}{\gamma_0}\ , \ \ \ \ k\in\Z

### 随机变量的线性相关

E ( A + B X ) = A + B E ( X ) , {\rm E}(\boldsymbol{A}+\boldsymbol{B}\boldsymbol{X})=\boldsymbol{A}+\boldsymbol{B}{\rm E}(\boldsymbol{X}),

V a r ( A + B X ) = B V a r ( X ) B T , {\rm Var}(\boldsymbol{A}+\boldsymbol{B}\boldsymbol{X})=\boldsymbol{B}{\rm Var}(\boldsymbol{X})\boldsymbol{B}^{\rm T},

X \boldsymbol{X} 的协方差阵 V a r ( X ) {\rm Var}(\boldsymbol{X}) 总是非负定的。

a n T Γ n a n = V a r ( a n T X ) = V a r ( ∑ i = 1 n a i X i ) ≥ 0 \boldsymbol{a}_n^{\rm T}\boldsymbol{\Gamma}_n\boldsymbol{a}_n={\rm Var}(\boldsymbol{a}_n^{\rm T}\boldsymbol{X})={\rm Var}\left(\sum_{i=1}^na_iX_i\right)\geq0

V a r ( a n T X ) = V a r ( ∑ i = 1 n a i X i ) = 0 {\rm Var}(\boldsymbol{a}_n^{\rm T}\boldsymbol{X})={\rm Var}\left(\sum_{i=1}^na_iX_i\right)=0

### 白噪声序列

{ ϵ t } \{\epsilon_t\} 是一个平稳序列，如果对任何 s ,   t ∈ N s,\,t\in\N
E ( ϵ t ) = μ   ,      C o v ( ϵ t ,   ϵ s ) = { σ 2   , t = s   , 0   , t ≠ s   , {\rm E}(\epsilon_t)=\mu \ , \ \ \ \ {\rm Cov}(\epsilon_t,\,\epsilon_s)=\left\{ \begin{array}{ll} \sigma^2\ , & t=s\ ,\\ 0\ , & t\neq s\ , \end{array} \right.

• { ϵ t } \{\epsilon_t\} 是独立序列时，称 { ϵ t } \{\epsilon_t\} 是独立白噪声；
• μ = 0 \mu=0 时，称 { ϵ t } \{\epsilon_t\} 是零均值白噪声；
• μ = 0 \mu=0 σ 2 = 1 \sigma^2=1 时，称 { ϵ t } \{\epsilon_t\} 是标准白噪声；
• ϵ t ∼ N ( 0 ,   1 ) \epsilon_t\sim{\rm N}(0,\,1) 时，称 { ϵ t } \{\epsilon_t\} 是正态白噪声，易证正态白噪声也是一类独立白噪声。

### 正交平稳序列

X X Y Y 是方差有限的随机变量，如果 E ( X Y ) = 0 {\rm E}(XY)=0 ，就称 X X Y Y 是正交的。如果 C o v ( X ,   Y ) = 0 {\rm Cov}(X,\,Y)=0 ，就称 X X Y Y 是不相关的。

Z t = X t + Y t   ,      t ∈ Z . Z_t=X_t+Y_t \ , \ \ \ \ t\in\Z .
(1) 如果 { X t } \{X_t\} { Y t } \{Y_t\} 正交，则 { Z t } \{Z_t\} 是平稳序列，且有自协方差函数
γ Z ( k ) = γ X ( k ) + γ Y ( k ) − 2 μ X μ Y   ,      k = 0 , 1 , 2 , . . . \gamma_Z(k)=\gamma_X(k)+\gamma_Y(k)-2\mu_X\mu_Y\ , \ \ \ \ k=0,1,2,...
(2) 如果 { X t } \{X_t\} { Y t } \{Y_t\} 不相关，则 { Z t } \{Z_t\} 是平稳序列，且有自协方差函数
γ Z ( k ) = γ X ( k ) + γ Y ( k )   ,      k = 0 , 1 , 2 , . . . \gamma_Z(k)=\gamma_X(k)+\gamma_Y(k)\ , \ \ \ \ k=0,1,2,...

E Z t 2 = E ( X t + Y t ) 2 ≤ E ( X t 2 + Y t 2 ) < ∞ . {\rm E}Z_t^2={\rm E}(X_t+Y_t)^2\leq{\rm E}(X_t^2+Y_t^2)<\infty.

μ Z = E Z t = E ( X t + Y t ) = μ X + μ Y . \mu_Z={\rm E}Z_t={\rm E}(X_t+Y_t)=\mu_X+\mu_Y.

C o v ( Z t ,   Z s ) = C o v ( X t ,   X s ) + C o v ( X t ,   Y s ) + C o v ( Y t ,   X s ) + C o v ( Y t ,   Y s ) = γ X ( t − s ) + γ Y ( t − s ) + E ( X t Y s ) − E ( X t ) E ( Y s ) + E ( Y t X s ) − E ( Y t ) E ( X s ) = γ X ( t − s ) + γ Y ( t − s ) + 0 − μ X μ Y + 0 − μ X μ Y = γ X ( t − s ) + γ Y ( t − s ) − 2 μ X μ Y . \begin{aligned} {\rm Cov}(Z_t,\,Z_s)&={\rm Cov}(X_t,\,X_s)+{\rm Cov}(X_t,\,Y_s)+{\rm Cov}(Y_t,\,X_s)+{\rm Cov}(Y_t,\,Y_s) \\ &=\gamma_X(t-s)+\gamma_Y(t-s)+{\rm E}(X_tY_s)-{\rm E}(X_t){\rm E}(Y_s)+{\rm E}(Y_tX_s)-{\rm E}(Y_t){\rm E}(X_s) \\ &=\gamma_X(t-s)+\gamma_Y(t-s)+0-\mu_X\mu_Y+0-\mu_X\mu_Y \\ &=\gamma_X(t-s)+\gamma_Y(t-s)-2\mu_X\mu_Y. \end{aligned}

C o v ( Z t ,   Z s ) = C o v ( X t ,   X s ) + C o v ( X t ,   Y s ) + C o v ( Y t ,   X s ) + C o v ( Y t ,   Y s ) = γ X ( t − s ) + 0 + 0 + γ Y ( t − s ) = γ X ( t − s ) + γ Y ( t − s ) . \begin{aligned} {\rm Cov}(Z_t,\,Z_s)&={\rm Cov}(X_t,\,X_s)+{\rm Cov}(X_t,\,Y_s)+{\rm Cov}(Y_t,\,X_s)+{\rm Cov}(Y_t,\,Y_s) \\ &=\gamma_X(t-s)+0+0+\gamma_Y(t-s) \\ &=\gamma_X(t-s)+\gamma_Y(t-s). \end{aligned}
t − s = k t-s=k 即可得证自协方差函数的表达式。

• 2
点赞
• 7
收藏
觉得还不错? 一键收藏
• 打赏
• 0
评论
07-04
12-11 906
06-27 1万+
05-11 1万+
12-07
07-12 2883
12-02 9003
08-27 3791
05-07
02-16 583
11-24 1662
10-04
02-05 2264

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。