码分多路复用是一种数学上的规律运用在数据链路层。
当想起CDM时,脑海中应该想起的是一个坐标系,简单的是二维平面直角坐标系,再复杂些是三维的空间直角坐标系。更高维的就难想象了。
为什么想到坐标系呢?
先这么看,二维直角坐标系下:
x轴的方向向量最简单的是:(1,0);
y轴的方向向量最简单的是:(0,1)
任意给你一个向量,让你拆分为是多少个(1,0)和(0,1)我想几乎所有人都拆分得开。
升级为三维空间下:
x轴的方向向量最简单的是:(1,0,0);
y轴的方向向量最简单的是:(0,1,0)
z轴的方向向量最简单的是:(0,0,1)
同样的,任意给你一个三维空间下的向量,让你拆分为三个轴对应的向量表达式,我想也不会是难题。
换句话说,给你一个向量,我们能够从中看到三个向量在加和,如果把三个坐标轴看作三种信号呢?是不是说,当我们在传输一个向量的时候,就完美的传输了多个信号?
再升级到四维,五维….N维,是不是就是传递了更多的信号?
对的!
我猜这或许就是CDM能够产生出来的数学基础吧。
这里很关键的是,信号能够被拆分,也就意味着不同的信号不会干扰其他信号。我们在选取坐标轴的方向向量时,应该注意到它们是完美正交的。
在CDMA中,每个比特时间再划分为m个短的间隔,成为码片,通常m值为64或128,这里使用m = 8来举个例子说明码分复用: