深度学习
文章平均质量分 70
ymy_ymy22
渣渣一枚
展开
-
数据集信息统计
下载链接Profile使用说明预训练模型。原创 2023-03-24 12:03:40 · 133 阅读 · 0 评论 -
Detectron2学习笔记
Detectron2学习笔记原创 2022-07-14 14:32:03 · 1030 阅读 · 0 评论 -
CompressAI学习
compressai学习笔记原创 2022-07-13 16:22:56 · 2821 阅读 · 0 评论 -
win10安装detectron2
Windows10下安装detectron2原创 2022-06-14 19:52:42 · 405 阅读 · 0 评论 -
参考文章速览
超分CVPR 2021 论文大盘点-超分辨率篇超分辨率汇总,都在这啦~https://mp.weixin.qq.com/s/pH9aYOi3q4y1rHu3j-oZ2A移动端超分的磁悬浮,推理仅需10ms!港理工&达摩院开源超轻量超分网络ECBlow-level的领域特征与结构重参数的结合:用于端侧设备的超轻量超分网络。https://mp.weixin.qq.com/s/wsA8XP4ej9lbFVRPB7E7CAICCV2021 RealVSR: 业界首个移动端真实场景视频超分数据原创 2021-09-22 20:33:19 · 2894 阅读 · 0 评论 -
注意力机制
超分辨中的注意力机制:Attention in Super Resolution - SuperGqq - 博客园注意力绪论参考:【计算机视觉】详解 Non-local 模块与 Self-attention (视觉注意力机制 (一))_闻韶-CSDN博客计算机相关领域主要使用的是soft attention,这些方法的共同之处在于:利用相关特征学习权重分布,再将学习得到的权重施加于特征上,从而进一步提取相关知识。但施加权重的方式略有差别,可概括为:加权可作用在原图上;...原创 2021-09-17 21:56:09 · 355 阅读 · 0 评论 -
轻量级网络
SqueezeNet系列 ShuffleNet系列 MnasNet MobileNet系列 CondenseNet ESPNet系列 ChannelNets PeleeNet IGC系列 FBNet系列 EfficientNet GhostNet WeightNet MicroNet 轻量级网络(MobileNetV2、ShuffleNetV2)轻量级检测(Light..原创 2021-09-17 14:31:22 · 195 阅读 · 0 评论 -
transformer
参考原文:https://www.zhihu.com/question/451860144/answer/1837109348Transformer是为序列建模和转换任务而设计的,因为它关注数据中的长期依赖性建模。它在语言领域了巨大成功。将Transformer从NLP转移到CV的策略。我们先看二者的不同:scale。与作为语言Transformer中处理的基本元素的单词标记不同,视觉元素在scale上可能有很大的差异,这是一个在目标检测等任务中受到关注的问题。在现有基于Transformer的原创 2021-09-09 17:19:01 · 481 阅读 · 0 评论 -
网络基础知识积累
一文看尽深度学习中的各种注意力机制(1998-2020年)https://mp.weixin.qq.com/s/7E2O5Qoyd_GBcZfUCO_CxA原创 2021-06-29 16:00:41 · 107 阅读 · 0 评论 -
深度学习-非线性激活函数
本文总结深度学习的损失函数及其优缺点。激活函数是深度学习模型的重要成分,目的是将线性输入转换为非线性。常见的激活函数有sigmoid,tanh,ReLU等目录1.sigmoid2.tanh3.Relu4.Leaky ReLU5.随机纠正线性单元(RReLU)6.ELU7.PRelu8.SELU1.sigmoidSigmoid 非线性函数将输入映射到 【0,1】之间。它的数学公式为:历史上, sigmoid 函数曾非常常用,然而现在它已经不太受欢迎,实原创 2021-03-01 20:55:41 · 4912 阅读 · 0 评论 -
深度学习-loss函数
参考机器学习大牛最常用的5个回归损失函数,你知道几个?https://baijiahao.baidu.com/s?id=1603857666277651546&wfr=spider&for=pc原创 2021-01-23 21:54:00 · 207 阅读 · 0 评论 -
深度学习-tensorflow-代码
tf.placeholder_with_default=tf.summary.scalarupdate_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)with tf.control_dependencies(update_ops):stack_name = os.path.join(dir_stack, "stack_tra_pre_*")num_TrainingStack = len(glob.glob(stack_name...原创 2021-01-20 22:14:19 · 233 阅读 · 0 评论 -
基于深度学习的视频后处理-超分辨
单帧经典文章总结https://blog.csdn.net/gwplovekimi/article/details/83041627原创 2021-01-08 19:18:21 · 326 阅读 · 0 评论 -
深度学习-网络训练技巧
自适应梯度剪切由于链式法则的计算,当网络的层数非常多时,经常出现梯度消失或者梯度爆炸的现象。体现在图像,就是损失函数有一个悬崖式的变化。如果设置的学习率太大,那么可能出现修改过度,甚至丢失已经优化好的数据。而自适应梯度剪切就是根据你的学习率,调整梯度的角度,确保收敛的稳定性。高学习率提高收敛速度的最直接方式就是增大学习率,但单纯的增大高学习率会产生收敛问题(收敛不稳定),虽然作者已经用了自适应梯度剪切的方法来增大收敛稳定性。但作者在设置学习率时,也能使用一下技巧来增强收敛稳定性。具体的做法是原创 2021-01-08 14:24:21 · 1034 阅读 · 0 评论 -
vdsr学习-代码问题
H5文件无法加载TypeError: h5py objects cannot be pickled多线程加载时会报错。修改:training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)改为:training_data_loader = DataLoader(dataset=train_set, batch_size=op原创 2021-01-08 09:53:48 · 952 阅读 · 0 评论 -
深度学习-基础知识-经典网络
卷积神经网络 https://www.jianshu.com/p/1ea2949c0056数据输入层/ Input layer 卷积计算层/ CONV layer ReLU激励层 / ReLU layer 池化层 / Pooling layer 全连接层 / FC layer一般CNN结构依次为1.INPUT2.[[CONV -> RELU]N -> POOL?]M3.[FC -> RELU]*K4.FC网络各层分析 及超详细讲解参考:ht..原创 2021-01-06 10:55:48 · 1710 阅读 · 0 评论 -
深度学习-环境配置
下载anaconda,进行环境管理。参考 https://zhuanlan.zhihu.com/p/36389880?from_voters_page=trueanaconda里面默认有python 下载pycharm 编译环境。参考,其中顺便关联anaconda https://blog.csdn.net/sunshine_hanxx/article/details/90760417?utm_medium=distribute.pc_relevant_t0.none-task-blo..原创 2021-01-04 19:53:27 · 183 阅读 · 0 评论