学习笔记-概率问题

这篇博客总结了概率问题的基本概念,如贝叶斯定理和伯努利试验,以及在面试中遇到的典型问题,如抛硬币、骰子投掷和随机数生成。通过实例详细解析了问题的解决方法,包括几何分布、二项分布的期望和方差,以及递推公式的应用。还探讨了宝剑升级问题的期望计算。
摘要由CSDN通过智能技术生成

这几天在看面试题时遇到一些非常恶心的概率问题, 加之因为之前数学大多忘记的一干二净了,就更是头疼。

所以把一些基本概念和常见的解法做一些总结,但愿能让思路清晰一些。


基本概念

贝叶斯定理 Pr{A | B} = Pr{A}Pr{B|A} / Pr{B} 

伯努利试验:每次试验相互独立,每次试验可能有两种结果 :成功(概率为p)、失败(概率为q)


问题1, 试验取得一次成功则停止,求总共需要多少次试验?

满足几何分布:

Pr{X=k} = q^(k-1) * p

E[X] = 1/p Var[X] = q/p^2 


问题2, n次实验成功多少次?

满足二项分布:

Pr{X=k} = C(k, n ) q^(n-k) * p^k

E[X] = np  Var[X] = npq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值