数论
ymzqwq
这个作者很懒,什么都没留下…
展开
-
[NOIP2016D2T1]组合数问题
传送门 一道水题debug一上午 我一定要发上来纪念一下 //话说最近在做历年NOIP,T1和T2有一道必WA。。。。弱成这样我大概没救了QAQ 其实就是C[n][m]=C[n−1][m−1]+C[n−1][m]C[n][m]=C[n−1][m−1]+C[n−1][m]C[n][m]=C[n-1][m-1]+C[n-1][m] 然后把前缀和预处理出来,就可以O(1)O(1)O(1)出答案啦...原创 2017-11-06 10:56:32 · 403 阅读 · 0 评论 -
[BZOJ] DZY Loves Math 系列 I && II
为了让自己看起来有点事干 ,做个套题吧。。不然老是东翻翻西翻翻也不知道在干嘛。。。3309:DZY Loves Math\bf 3309: DZY \ Loves \ Math3309:DZY Loves Math令 h=f∗μh=f*\muh=f∗μ很明显题目要求的就是∑i=1min(n,m)h(i)⋅⌊ni⌋⌊mi⌋\sum_{i=1}^{min(...原创 2019-07-25 21:05:40 · 183 阅读 · 0 评论 -
[BZOJ3561] DZY Loves Math VI
推推柿子,得到答案是这个东东(我果然对莫比乌斯反演还不够熟悉啊QAQ)∑d=1ndd∑x=1⌊nd⌋μ(x)⋅x2d∑i=1⌊ndx⌋id∑j=1⌊mdx⌋jd\sum_{d=1}^n d^d \sum_{x=1}^{\lfloor \frac{n}{d} \rfloor} \mu(x) \cdot x^{2d} \sum_{i=1}^{\lfloor \frac{n}{dx} \rfloor}...原创 2019-07-30 21:08:18 · 197 阅读 · 0 评论 -
[BZOJ3560] DZY Loves Math V
传送门啊终于有一道我会的啦ヾ(◍°∇°◍)ノ゙发现可以对每个质因子分别考虑贡献,最后乘起来。对于一个质因子 ppp ,设它在 iii 个数里出现了 aia_iai 次,令 sum=∏(1+p1+p2+⋯+pai)sum=\prod (1+p^1+p^2+ \cdots +p^{a_i})sum=∏(1+p1+p2+⋯+pai),那么它的贡献就是 (sum−1)⋅p−1p+1(sum-1...原创 2019-07-30 19:02:30 · 205 阅读 · 0 评论 -
[BZOJ3512] DZY Loves Math IV
传送门昨天花了好久好像是看懂了,那今天早上尝试自己推一遍柿子 顺便水了一篇博客Description\bf {Description}Description求∑i=1n∑i=1mφ(ij)\sum_{i=1}^n \sum_{i=1}^m\varphi(ij)i=1∑ni=1∑mφ(ij)1≤n≤105,1≤m≤1091 \leq n \leq 10^5 , 1 \leq m \leq...原创 2019-07-30 09:15:30 · 369 阅读 · 0 评论 -
十进制快速幂
【模板】欧拉定理不会扩展欧拉定理?十进制快速幂,你值得拥有!!#include<bits/stdc++.h>#define LL long long#define fr(i,x,y) for(int i=(x);i<=(y);i++)#define rf(i,x,y) for(int i=(x);i>=(y);i--)#define frl(i,x,y) fo...原创 2019-07-24 18:47:34 · 300 阅读 · 0 评论 -
欧拉定理及其证明
我真的很逊,所以有错也说不定。这篇很简,所以看不懂也说不定。总觉得小满哥讲过这个证明,虽然身为老年健忘选手我大概是不记得什么了。。欧拉定理:aφ(n)≡1 (mod n)a^{\varphi(n)} \equiv 1 \ (mod \ n)aφ(n)≡1 (mod n) ,其中 (a,n)=1(a,n) = 1(a,n)=1费马小定理:ap−1≡1&...原创 2019-07-17 09:05:02 · 15264 阅读 · 7 评论 -
Codeforces 1109D: generalizations of Cayley's formula证明
做这题的时候发现题解里有提到generalizations&amp;amp;amp;nbsp;of&amp;amp;amp;nbsp;Cayley′s&amp;amp;amp;nbsp;formulageneralizations\ of\ Cayley&amp;amp;amp;amp;#x27;s\ formulageneralizations&amp;amp;amp;nbsp;of&amp;amp;amp;n原创 2019-02-18 17:47:25 · 456 阅读 · 4 评论 -
TopCoder SRM 683 Div1 500 GCDLCM2
神奇的结论题首先,由于gcd(x,y)∗lcm(x,y)=x∗ygcd(x,y)*lcm(x,y)=x*ygcd(x,y)∗lcm(x,y)=x∗y,然后有个结论小学就该知道了吧,乘积一定时,两个数差得越远和越大,所以,我们应该尽量多做这种操作。考虑将x,yx,yx,y质因数分解,设x=p1a1⋅p2a2⋯pnanx=p_1^{a_1} \cdot p_2^{a_2} \cdots p_n^{...原创 2018-10-23 08:27:51 · 147 阅读 · 0 评论 -
TopCoder SRM 617 Div2 1000 MyVeryLongCake
答案为n−ϕ(n)n−ϕ(n)n-\phi(n)//tc is healthy, just do it#include &amp;lt;bits/stdc++.h&amp;gt;using namespace std;template&amp;lt;class T&amp;gt; void checkmin(T &amp;amp;a,const T &amp;amp;b) { if (b&am原创 2018-09-07 08:35:18 · 130 阅读 · 0 评论 -
TopCoder SRM 577 Div2 1000 EllysCoprimesDiv2
自己装了插件貌似哪里没弄好。。不太懂为什么这种题也是1000// BEGIN CUT HERE// END CUT HERE#line 5 &quot;EllysCoprimesDiv2.cpp&quot;#include&amp;lt;bits/stdc++.h&amp;gt;using namespace std;int gcd(int a,int b){ return b==0?a:gcd(b,a...原创 2018-08-30 14:07:04 · 259 阅读 · 0 评论 -
TopCoder SRM 569 Div2 1000 MegaFactorialDiv2
这次的1000好简单啊w(゚Д゚)w 然而我还是FST了。。因为中间忘记模了。。。好像就是个大暴力啊 可以直接根据题目给出的递推式把n!kn!kn!k个各个质因子个数递推出来(不过空间开不下要用滚动数组) 求因子个数有个公式相信大家小学就知道了 若x=pa11⋅pa22⋯pammx=p1a1⋅p2a2⋯pmamx=p_1^{a_1}\cdot p_2^{a_2}\cdots p_m^{...原创 2018-08-13 19:57:25 · 309 阅读 · 0 评论 -
1到n的k次方和
∑i=1ni=n(n+1)2∑i=1ni=n(n+1)2\sum_{i=1}^ni=\frac{n(n+1)}{2} ∑i=1ni2=2n3+3n2+n6∑i=1ni2=2n3+3n2+n6\sum_{i=1}^ni^2=\frac{2n^3+3n^2+n}{6} ∑i=1ni3=n4+2n3+n24∑i=1ni3=n4+2n3+n24\sum_{i=1}^ni^3=\frac{n^4+2n^...原创 2018-08-08 11:36:55 · 7713 阅读 · 2 评论 -
TopCoder SRM 567 Div2 1000 countPlacements
神tm这题有毒,模数是1e9+9不是1e9+7坑死我了容易发现有些格子是必须作为山顶的,其余格子是不是山顶都是无所谓的。一个格子只要满足上方三个都不是’X’就必须作为一个山顶,因为没有别的山顶可以覆盖它了。可以统计出必须为山顶的格子有 sss 个,其它’X’的格子有 sXsXsX个。套用排列组合经典的小球问题,就相当于将 NNN 个不同的小球放入 sXsXsX 个盒子里,可以为空,其中 s...原创 2018-08-10 14:29:17 · 209 阅读 · 0 评论 -
[HDU 5780] gcd (公式证明)
做出这题你需要推出一个重要的式子:gcd(xa−1,xb−1)=xgcd(a,b)−1gcd(xa−1,xb−1)=xgcd(a,b)−1gcd(x^a-1,x^b-1)=x^{gcd(a,b)}-1 我这证明可能不算严谨吧。。。。 反正OI不需要证明,只需要感性理解。然而我个人觉得感性理解反而比证明重要啊,证明不就是几个式子套来套去,过几天就忘光了。 不妨设a&gt;ba&gt;ba>b,...原创 2018-08-10 09:05:19 · 491 阅读 · 0 评论 -
[Codeforces 340E] Iahub and Permutations (容斥)
传送门 这个340E竟然是340e,让人觉得很诡异。。。稍微分析一下就可以发现这题本质是求sss个数排列,有qqq个数可以随便排,其余错排的方案数。回忆一下,我们证明错排通项公式的时候是怎么容斥的,其实这题也差不多。 就是总方案数 - 1个在原来位置上的方案数 + 2个在原来位置上的方案数 - 3个在原来位置上的方案数…… 具体来说,有iii个在原来位置上的方案数,就是先在要错排的数...原创 2018-07-27 18:17:50 · 325 阅读 · 1 评论 -
[hdu3625] Examining the Rooms (第一类斯特林数)
传送门 感觉这题的思想还是挺巧妙的 反正我想出来的时候有种被自己机智到了的感觉233(其实是我平时太蠢,所以偶尔想出一道题就觉得自己棒棒的。。)用key[i]key[i]key[i]表示第iii个房间放的钥匙编号,那么keykeykey数组就是111到nnn的一个排列,所以总方案数就是n!n!n!。 这就是最后概率的分母咯再求分子。 我们可以这样考虑,将iii和key[i]key[...原创 2018-07-27 16:27:34 · 185 阅读 · 0 评论 -
[hdu4045]Machine scheduling (DP+第二类斯特林数)
传送门 (这题没明确讲多组数据害我WA了一发)可以把题目分成两个部分 - 从n个机器中选出r个 - 将r个机器分成不超过m组第二个子问题很明显是第二类斯特林数,即∑mi=1Sr,i∑i=1mSr,i\sum_{i=1}^{m}S_{r,i}比较棘手的是第一个子问题,网上的题解多是插板法不再赘述,这里提供一种DP的做法。 用f[i][j]f[i][j]f[i][j]表示当前选...原创 2018-07-27 16:07:13 · 231 阅读 · 1 评论 -
[BZOJ3481] DZY Loves Math III
传送门被续了大半天。。因为我不会 Miller-Rabin,更不会Pollard-Rho,而且作为一个自带大常数的菜鸡,我写的Pollard-Rho甚至过不去洛谷上的模板QAQ(因为没写路径倍增?)言归正传,假设我们有充足的时间枚举每一个 xxx,那么在 xxx 确定的情况下,原式变成了一个模方程。根据裴蜀定理,我们知道只有当 gcd(x,P)∣Qgcd(x,P)|Qgcd(x,P)∣Q ...原创 2019-07-26 14:44:16 · 166 阅读 · 0 评论