1到n的k次方和

∑ i = 1 n i = n ( n + 1 ) 2 \sum_{i=1}^ni=\frac{n(n+1)}{2} i=1ni=2n(n+1)
∑ i = 1 n i 2 = 2 n 3 + 3 n 2 + n 6 \sum_{i=1}^ni^2=\frac{2n^3+3n^2+n}{6} i=1ni2=62n3+3n2+n
∑ i = 1 n i 3 = n 4 + 2 n 3 + n 2 4 \sum_{i=1}^ni^3=\frac{n^4+2n^3+n^2}{4} i=1ni3=4n4+2n3+n2
∑ i = 1 n i 4 = 6 n 5 + 15 n 4 + 10 n 3 − n 30 \sum_{i=1}^ni^4=\frac{6n^5+15n^4+10n^3-n}{30} i=1ni4=306n5+15n4+10n3n


补个证明,以平方和为例,高次类似。

{ ( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 n 3 − ( n − 1 ) 3 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 ⋯ ⋯ 2 3 − 1 3 = 3 ⋅ 1 2 + 3 ⋅ 1 + 1 \begin{cases}(n+1)^3-n^3=3n^2+3n+1 \\ n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 \\ \cdots \\ \cdots \\ 2^3-1^3=3\cdot1^2+3\cdot1+1\end{cases} (n+1)3n3=3n2+3n+1n3(n1)3=3(n1)2+3(n1)+12313=312+31+1

左右分别相加,设 ∑ i = 1 n i 2 = X \sum_{i=1}^ni^2=X i=1ni2=X,则有 ( n + 1 ) 3 − 1 3 = 3 X + 3 ⋅ n ( n + 1 ) 2 + n (n+1)^3-1^3=3X+3\cdot\frac{n(n+1)}{2}+n (n+1)313=3X+32n(n+1)+n
整理可得 X = 2 n 3 + 3 n 2 + n 6 X=\frac{2n^3+3n^2+n}{6} X=62n3+3n2+n


听说大概还可以用拉格朗日插值法?
博主太菜了,暂时还不会QAQ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值