Appium+Opencv 图像识别在自动化中的使用1-环境搭建

本文记录了使用Appium+Opencv进行自动化测试的环境搭建过程,涉及Appium、Genymotion、VirtualBox、Android SDK和IntelliJ等工具。在Java环境下,由于官方安装方法存在问题,通过Gradle解决依赖问题。完成环境配置后,进行了简单的图像平滑处理测试,为后续Android自动化测试打下基础。
摘要由CSDN通过智能技术生成

Appium+Opencv java环境创建

看了一篇关于手机图像识别在手机自动化中的应用的文章,很敢兴趣,所以进行了摸索尝试。这里记录环境的搭建。


涉及工具

  • Appium
  • genymotion
  • virtualbox
  • Android sdk
  • IntelliJ

环境搭建

由于Appium的环境搭建已经在其他博文中有了介绍,就只关注opencv的使用了。

由于我们使用java进行开发,所以使用opencv的java接口库javacv,相关的资料可以查看:https://github.com/bytedeco/javacv
踩了很久的坑发现官方的安装方法有bug,使用gradle方式时,有一个jar包无法下载,坑了很久。

其实环境搭建非常简单,创建一个gradle project,在build.gradle文件中添加dependence:

dependencies {
    testCompile group: 'junit', name: 'junit', version: '4.11'
    compile group: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值