DNN(深度神经网络算法)

本文深入介绍了深度神经网络(DNN)的基本概念,探讨了TensorFlow成为热门深度学习库的原因,并详细讲解了如何在TensorFlow中处理数据集、定义模型、训练与学习,以及评估模型。提到了MNIST、CIFAR10等数据集,并介绍了TensorFlow读取数据的多种方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


自从 1962 年 Rosenblat 提出感知机(Perceptron)以来,DNN 的概念就已经出现了,而自 Rumelhart、Hinton 和 Williams 在 1986 年发现了梯度下降算法后,DNN 的概念就变得可行了。直到最近 DNN 才成为全世界 AI/ML 爱好者和工程师的最爱。
一个算法出名后,它概念的出现已经是好几十年前,那时候其相应的硬件还没有诞生。

概念

神经网络是一个生物启发式的计算和学习模型。像生物神经元一样,它们从其他细胞(神经元或环境)获得加权输入。这个加权输入经过一个处理单元并产生可以是二进制或连续(概率,预测)的输出。

人工神经网络(ANN)是这些神经元的网络,可以随机分布或排列成一个分层结构。这些神经元通过与它们相关的一组权重和偏置来学习。

下图对生物神经网络和人工神经网络的相似性给出了形象的对比:
人工神经网络
深度学习 :由多个处理层(隐藏层)组成的计算模型。层数的增加会导致学习时间的增加。由于数据量庞大,学习时间进一步增加,现今的 CNN 或生成对抗网络(GAN)的规范也是如此。

TensorFlow 成为最受欢迎的深度学习库,原因

  1. TensorFlow 是一个强大的库,用于执行大规模的数值计算,如矩阵乘法或自动微分。这两个计算是实现和训练 DNN 所必需的。
  2. TensorFlow 在后端使用 C/C++,这使得计算速度更快。
  3. TensorFlow 有一个高级机器学习 API(tf.contrib.learn),可以更容易地配置、训练和评估大量的机器学习模型。
  4. 可以在 TensorFlow 上使用高级深度学习库 Keras。Keras 非常便于用户使用,并且可以轻松快速地进行原型设计。它支持各种 DNN,如RNN、CNN,甚至是两者的组合。
  5. 任何深度学习网络都由四个重要部分组成:数据集、定义模型(网络结构)、训练/学习和预测/评估。可以在 TensorFlow 中实现所有这些

数据集

DNN 依赖于大量的数据。可以收集或生成数据,也可以使用可用的标准数据集。
TensorFlow 支持三种主要的读取数据的方法,可以在不同的数据集中使用,下面是训练建立模型的一些数据集:

  1. MNIST:这是最大的手写数字(0~9)数据库。它由 60000 个示例的训练集和 10000 个示例的测试集组成。该数据集存放在 Yann LeCun 的主页(http://yann.lecun.com/exdb/mnist/)中。这个数据集已经包含在tensorflow.examples.tutorials.mnist 的 TensorFlow 库中。
  2. CIFAR10:这个数据集包含了 10 个类别的 60000 幅 32×32 彩色图像,每个类别有 6000 幅图像。其中训练集包含 50000 幅图像,测试数据集包含 10000 幅图像。数据集的 10 个类别分别是:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。该数据由多伦多大学计算机科学系维护(h
深度神经网络DNN)是一种基于神经网络的机器学习算法,用于处理输入和输出之间复杂的非线性关系。它通过多个隐藏层来构建网络结构,每个隐藏层都包含多个神经元,通过学习权重和偏置参数来实现从输入到输出的映射。 在Python中,我们可以使用各种深度学习框架来实现DNN,例如TensorFlow、PyTorch和Keras等。这些框架提供了高级的API和丰富的工具,使得构建和训练DNN变得更加简单和高效。 在Python中实现DNN的步骤包括数据准备、网络构建、训练和评估等。 首先,我们需要准备用于训练和测试的数据集。通常,我们会将数据集划分为训练集和测试集,其中训练集用于训练网络参数,测试集用于评估网络性能。 接下来,我们可以使用Python中的深度学习框架构建DNN网络结构。通过选择合适的层数、神经元数量和激活函数等参数,可以设计出适合特定问题的网络结构。 然后,我们可以使用训练集对网络进行训练。在训练过程中,DNN通过反向传播算法来更新权重和偏置参数,不断优化网络的性能。可以根据需要调整学习率、批处理大小和迭代次数等参数来控制训练过程。 最后,我们可以使用测试集来评估已训练好的DNN网络的性能。通过计算准确度、精确度、召回率和F1值等指标,可以评估网络在分类、回归或其他任务上的表现。 总之,DNN深度神经网络是一种强大的机器学习算法,通过Python中的深度学习框架实现它可以帮助我们解决各种复杂的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ynchyong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值