机器学习—FPGrowth
用于发现频繁项集
应用场景:我们常说的: 啤酒+尿布
假设我们购买的如下:
解释:每一行都是一条购买记录,transaction表示每次购买的是哪几样商品,sort这列是按所有商品购买次数的多少,从大到小排列。
从上表可以看出 B(6次), E(5次), A(4次), C(4次), D(4次)
然后我们就按数量从大到小排,每次Sort的顺序都是BEACD
假设最低支持度为3:
根据上述的分析,我们从高到低画出的图如下:
根据上图,FPGrowth挖掘过程如下(从低往高处挖):
然后最后就得到多个的项集组合 如:DAE(3) 、DAEB(3)、DAB(3)、DEB(3)…
因此就能得到一起购买的的商品集的数量,为商家摆放货物提供参考。