Spark 机器学习 FPGrowth

本文介绍了FPGrowth算法在商品关联分析中的应用,通过实例展示了如何挖掘购物数据中的频繁项集,例如啤酒与尿布的关联。设置最低支持度为3,最终得出如DAE、DAEB等一起购买的商品组合,为商家提供商品布局参考。
摘要由CSDN通过智能技术生成

机器学习—FPGrowth

用于发现频繁项集
应用场景:我们常说的: 啤酒+尿布

假设我们购买的如下:
在这里插入图片描述

解释:每一行都是一条购买记录,transaction表示每次购买的是哪几样商品,sort这列是按所有商品购买次数的多少,从大到小排列。
从上表可以看出 B(6次), E(5次), A(4次), C(4次), D(4次)
然后我们就按数量从大到小排,每次Sort的顺序都是BEACD


假设最低支持度为3:

根据上述的分析,我们从高到低画出的图如下:

图
根据上图,FPGrowth挖掘过程如下(从低往高处挖):

在这里插入图片描述
然后最后就得到多个的项集组合 如:DAE(3) 、DAEB(3)、DAB(3)、DEB(3)…

因此就能得到一起购买的的商品集的数量,为商家摆放货物提供参考。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值