QDU 礼尚往来(组合数学之错排公式)

礼上往来

发布时间: 2016年1月3日 19:13   最后更新: 2016年1月3日 19:15   时间限制: 1000ms   内存限制: 128M

每当节日来临,女友众多的xxx总是能从全国各地的女友那里收到各种礼物。

有礼物收到当然值得高兴,但回礼确是件麻烦的事!

无论多麻烦,总不好意思收礼而不回礼,那也不是xxx的风格。

  

现在,即爱面子又抠门的xxx想出了一个绝妙的好办法:他准备将各个女友送来的礼物合理分配,再回送不同女友,这样就不用再花钱买礼物了!

  

假设xxx的n个女友每人送他一个礼物(每个人送的礼物都不相同),现在他需要合理安排,再回送每个女友一份礼物,重点是,回送的礼物不能是这个女友之前送他的那个礼物,不然,xxx可就摊上事了,摊上大事了......

  

现在,xxx想知道总共有多少种满足条件的回送礼物方案呢? 

输入数据第一行是个正整数T,表示总共有T组测试数据(T <= 100);
每组数据包含一个正整数n,表示叽叽哥的女友个数为n( 1 <= n <= 100 )。

请输出可能的方案数,因为方案数可能比较大,请将结果对10^9 + 7 取模后再输出。
每组输出占一行。

  复制
3
1
2
4
0
1 
9

思路:裸的错排公式。

以下来自百度百科:

问题: 十本不同的书放在书架上。现重新摆放,使每本书都不在原来放的位置。有几种摆法?
这个问题推广一下,就是错排问题,是组合数学中的问题之一。考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。 n个元素的错排数记为D(n)。 研究一个排列错排个数的问题,叫做错排问题或称为更列问题。

错排问题最早被尼古拉·伯努利和欧拉研究,因此历史上也称为伯努利-欧拉的装错信封的问题。这个问题有许多具体的版本,如在写信时将n封信装到n个不同的信封里,有多少种全部装错信封的情况?又比如四人各写一张贺年卡互相赠送,有多少种赠送方法?自己写的贺年卡不能送给自己,所以也是典型的错排问题。
当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用D(n)表示,那么D(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.

第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;

第二步,放编号为k的元素,这时有两种情况:⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有D(n-2)种方法;⑵第k个元素不把它放到位置n,这时,对于这n-1个元素,有D(n-1)种方法;

综上得到

D(n) = (n-1) [D(n-2) + D(n-1)]

特殊地,D(1) = 0, D(2) = 1.

推导方式之一,通过容斥原理:

用容斥原理也可以推出错排公式:

正整数1, 2, 3, ……, n的全排列有 n! 种,其中第k位是k的排列有 (n-1)! 种;当k分别取1, 2, 3, ……, n时,共有n*(n-1)!种排列是至少放对了一个的,由于所求的是错排的种数,所以应当减去这些排列;但是此时把同时有两个数不错排的排列多排除了一次,应补上;在补上时,把同时有三个数不错排的排列多补上了一次,应排除;……;继续这一过程,得到错排的排列种数为

D(n) = n! - n!/1! + n!/2! - n!/3! + … + (-1)^n*n!/n! = ∑(k=2~n) (-1)^k * n! / k!,

即D(n) = n! [1/0! - 1/1! + 1/2! - 1/3! + 1/4! + ... + (-1)^n/n!].

其中,∑表示连加符号,k=2~n是连加的范围;0! = 1,可以和1!相消。


Code:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
const LL mod = 1e9+7;
LL d[105];
inline void init()
{
	d[0] = d[1] = 0; d[2] = 1;
	for(int i = 3; i <= 100; ++i)
	d[i] = (i-1)*((d[i-1]+d[i-2])%mod)%mod;
}
int main()
{
	int t, n;
	cin >> t; init();
	for(int _ = 1; _ <= t; ++_)
	{
		cin >> n;
		cout << d[n] << endl;
	}
	return 0;
}

继续加油~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值