哈密顿图和欧拉图知识小结

哈密顿图的判定是世界级难题。

设G是n阶无向简单图,若对于G中任意不相邻的顶点u、v,均有d(u)+d(v)>=n-1,则说明G中存在哈密顿通路。

不过,这个条件只是充分条件,而不是必要条件。

也就是说,满足该条件一定存在哈密顿通路,但不满足该条件不一定不存在哈密顿通路。

如下图便不满足,但它存在哈密顿路。


所以要判断哈密顿回路和哈密顿路径一般通过深搜回溯去判定,代码:

#include <algorithm>
#include <iostream>
#include <string.h>
#include <vector>
using namespace std;
const int maxn = 1005;
vector<int> G[maxn];
int n, m, root;
int vis[maxn];
int HamiPath(int cur, int cnt)
{
	if(cnt == n)
	{
		//判定哈密顿回路 
		for(int i = 0; i < G[cur].size(); ++i)
		if(G[cur][i] == root) return 1;
		return 0;
		//return 1;	//判定哈密顿路直接return 1即可 
	}
	for(int i = 0; i < G[cur].size(); ++i)
	{
		int v = G[cur][i];
		if(vis[v]) continue;
		vis[v] = 1;
		if(HamiPath(v, cnt+1)) return 1;
		vis[v] = 0;
	}
	return 0;
}
int main()
{
	cin >> n >> m;
	memset(vis, 0, sizeof vis); 
	for(int i = 1; i <= n; ++i) G[i].clear();
	for(int i = 1; i <= m; ++i)
	{
		int u, v;
		scanf("%d %d", &u, &v);
		G[u].push_back(v);
		G[v].push_back(u);
	}
	root = 1;
	if(HamiPath(root, 1)) puts("exist");
	else puts("not exist");
	return 0;
}


更为重要的是欧拉图的判定:

定义:

欧拉回路:每条边恰好只走一次,并能回到出发点的路径
欧拉路径:经过每一条边一次,但是不要求回到起始点

欧拉回路存在性的判定:

一、无向图
每个顶点的度数都是偶数,则存在欧拉回路。

二、有向图(所有边都是单向的)
每个节顶点的入度都等于出度,则存在欧拉回路。

欧拉路径存在性的判定:

一、无向图
一个无向图存在欧拉路径,当且仅当该图所有顶点的度数为偶数或者除了两个度数为奇数外其余的全是偶数。

二、有向图

一个有向图存在欧拉路径,当且仅当该图所有顶点的度数为零或者一个顶点的度数为1,另一个度数为-1,其他顶点的度数为0。(有向图的度数等于该点的出度+入度,其中出度和入度一正一负)

然后较难的是混合图的欧拉回路和欧拉路径是否存在的判定:

混合图的欧拉回路的判定就是上一篇博客的例题通过最大流求解,也有自己的个人理解。

混合图的欧拉路径的判定,这个人的方法可以实现:求欧拉路径的第一步一定是求欧拉回路,在混合图上也不例外,如何判断混合图欧拉回路问题的存在性呢?首先,用上篇博客的方法判断该图是否存在欧拉回路,如果存在,欧拉路径一定存在。如果欧拉回路不存在,那么我们枚举欧拉路径的起点和终点,连接一条无向边,然后再用最大流判断是否存在欧拉回路即可。

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值