计蒜客-2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛H题Skiing(拓扑序求DAG最长路)

题意:

给定一个有向无环图,求该图的最长路。

思路:

由于是有向无环图,所以最长路肯定是一个入度为0到出度为0的路径,拓扑序在确定当前点之前能够考虑到所有到它的情况,所以最后取个最值即可。

代码:

#include <bits/stdc++.h>
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 1e4+5;
const int maxm = 1e5+5;
struct node{int v, w, next;} edge[maxm];
int no, head[maxn];
int t, n, m;
int deg[maxn], val[maxn];
queue<int> q;
void init()
{
	no = 0;
	memset(head, -1, sizeof head);
	memset(deg, 0, sizeof deg);
	memset(val, 0, sizeof val);
}
inline void add(int u, int v, int w)
{
	edge[no].v = v; edge[no].w = w;
	edge[no].next = head[u]; head[u] = no++;
}
void topsort()
{
	while(!q.empty()) q.pop();
	for(int i = 1; i <= n; ++i)
	if(!deg[i]) q.push(i);
	int ans = 0;
	while(!q.empty())
	{
		int u = q.front(); q.pop();
		for(int k = head[u]; k+1; k = edge[k].next)
		{
			int v = edge[k].v;
			val[v] = max(val[v], edge[k].w+val[u]);
			if(--deg[v] == 0) q.push(v);
		}
	}
	printf("%d\n", *max_element(val+1, val+n+1));
}
int main()
{
	for(scanf("%d", &t); t--;)
	{
		scanf("%d %d", &n, &m); init();
		for(int i = 1; i <= m; ++i)
		{
			int u, v, w;
			scanf("%d %d %d", &u, &v, &w);
			add(u, v, w); ++deg[v];
		}
		topsort();
	}
	return 0;
}


继续加油~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值