题意:
首先给一个点n,再给出n个数代表无向图n个节点的度数,问该度数序列能否构成一个无向图,如果不能则输出impossible。如果能,再判断是否能唯一可图化一张图,如果唯一,输出unique,并打印所有边的信息。如果不唯一,输出multiple,并打印构成的任意两个不同的图的边的信息。
思路:
都会很容易去想贪心构图,但是判唯一则解决不了。这里用到了一个Havel-Hakimi定理,不难理解,下面转载一下别人的解释(链接1,链接2):
1,Havel-Hakimi定理主要用来判定一个给定的序列是否是可图的。
2,首先介绍一下度序列:若把图 G 所有顶点的度数排成一个序列 S,则称 S 为图 G 的度序列。
3,一个非负整数组成的有限序列如果是某个无向图的序列,则称该序列是可图的。
4,判定过程:(1)对当前数列排序,使其呈递减,(2)从S【2】开始对其后S【1】个数字-1,(3)一直循环直到当前序列出现负数(即不是可图的情况)或者当前序列全为0 (可图)时退出。
5,举例:序列S:7,7,4,3,3,3,2,1 删除序列S的首项 7 ,对其后的7项每项减1,得到:6,3,2,2,2,1,0,继续删除序列的首项6,对其后的6项每项减1,得到:2,1,1,1,0,-1,到这一步出现了负数,因此该序列是不可图的。
6.解释一下意思:排好序后为d1,d2,d3,d4....dn,设度数最大的为v1,将它与度数次大的前d1个顶点连边,然后这个顶点就可以不管了,及在序列中删除首项d1,并把后面的d1个度数减1,依次下去,知道所有的为0就是可图的,出现负数,就一定不可图...
时间复杂度为O(n^2)。
对于本题,首先可以通过上述定理判断能否可图化,然后在进行Havel-Hakimi的连边过程中,如果对当前点连边的时候,与其连边的最后一个点剩余的度数和最后一个点的下一个点(即第一个不和当前点连边的点)剩余的度数相等,则表明当前点对于这两个点中的任意一个进行连边都是可行的,但是却会构造出不同的生成图,于是就能得到两个不同的连边方案了。如果始终都不存在这种情况,则表明只有唯一的一种连边方案。
代码:
#include <algorithm>
#include <functional>
#include <cstdio>
using namespace std;
int n;
pair<int, int> p1[105], p2[105];
pair<int, int> ans1[10005], ans2[10005];
int a[105];
bool cmp(pair<int, int> pr1, pair<int, int> pr2)
{
if(pr1.second == pr2.second)
return pr1.first < pr2.first;
else
return pr1.second > pr2.second;
}
bool Havel_Hakimi()
{
for(int i = 0; i < n; ++i)
{
sort(a, a+n, greater<int>());
if(i+a[i] >= n) return false;
if(a[i] == 0) return true; //本题中用于判断不连通的无向图也是满足的
for(int j = 1; j <= a[i]; ++j)
{
--a[i+j];
if(a[i+j] < 0) return false;
}
}
if(a[n-1] != 0) return false;
return true;
}
int main()
{
while(~scanf("%d", &n))
{
int x, sum = 0;
for(int i = 0; i < n; ++i)
{
scanf("%d", &a[i]);
p1[i].first = i+1;
p1[i].second = a[i];
p2[i].first = i+1;
p2[i].second = a[i];
}
if(!Havel_Hakimi()) puts("IMPOSSIBLE");
else
{
int flag = 0, cnt1 = 0;
for(int i = 0; i < n; ++i)
{
sort(p1, p1+n, cmp);
if(p1[i].second == 0) break;
int tmp = i+p1[i].second;
if(tmp+1 < n && p1[tmp].second == p1[tmp+1].second)
flag = 1;
int u = p1[i].first;
for(int j = 1; j <= p1[i].second; ++j)
{
--p1[i+j].second;
int v = p1[i+j].first;
ans1[++cnt1] = make_pair(u, v);
}
}
if(!flag)
{
puts("UNIQUE");
printf("%d %d\n", n, cnt1);
for(int i = 1; i <= cnt1; ++i)
printf("%d%c", ans1[i].first, i==cnt1?'\n':' ');
for(int i = 1; i <= cnt1; ++i)
printf("%d%c", ans1[i].second, i==cnt1?'\n':' ');
if(!cnt1) printf("\n\n");
}
else
{
int cnt2 = 0;
for(int i = 0; i < n; ++i)
{
sort(p2, p2+n, cmp);
if(p2[i].second == 0) break;
int tmp = i+p2[i].second;
if(tmp+1 < n && p2[tmp].second == p2[tmp+1].second)
swap(p2[tmp], p2[tmp+1]);
int u = p2[i].first;
for(int j = 1; j <= p2[i].second; ++j)
{
--p2[i+j].second;
int v = p2[i+j].first;
ans2[++cnt2] = make_pair(u, v);
}
}
puts("MULTIPLE");
printf("%d %d\n", n, cnt1);
for(int i = 1; i <= cnt1; ++i)
printf("%d%c", ans1[i].first, i==cnt1?'\n':' ');
for(int i = 1; i <= cnt1; ++i)
printf("%d%c", ans1[i].second, i==cnt1?'\n':' ');
printf("%d %d\n", n, cnt2);
for(int i = 1; i <= cnt2; ++i)
printf("%d%c", ans2[i].first, i==cnt2?'\n':' ');
for(int i = 1; i <= cnt2; ++i)
printf("%d%c", ans2[i].second, i==cnt2?'\n':' ');
}
}
}
return 0;
}
继续加油~