题意:给出一张无向图中每个点的度,问是否存在对应的无向简单图。如果存在,是否存在多解,并输出对应的图。
思路:给出图中每点的度,判定对应的图是否存在,叫做可图判定性问题。
对于无向图,我们有
Havel—Hakimi定理:
由非负数组成的非增序列s:d1,d2,···,dn(n>=2,d1>=1)是可图的,当仅当序列 s1:d2-1,d3-1,···,dd1+1 -1,dd1+2,····,dn是可图的。
这个定理是递归的,我们就可以用算法来直接判定。
而无法构成图的条件是:1.最大度的点超过了其他的需要连边的点的总数量,即,该点即使向其他所有的能连边的点都连边,也不能满足其度,不可能。
2一个点的度减到负。即,剩下能够连边的点的数量不够度最大点的度,不可能。
如果sort(p+i, p+n)排序后,从i分别向i+1, i+2...i+p[i].d连边时,如果i+p[i].d跟i+p[i].d+1的剩余度数相同,那么交换这两个点在剩下的图中的位置,就能得到两个不同的图了。.
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 1e2 + 7;
const int maxm = maxn*maxn;
int n, tot;
pair<int, int> e1[maxm], e2[maxm]; //存两种图的边
struct node
{
int d, id;
bool operator < (const node &a) const
{
return d > a.d;
}
}p[2][maxn];
bool solve(node *p, pair<int, int> *e)
{
int cnt = 0;
for(int i = 0; i < n-1; i++)
{
sort(p+i, p+n);
if(p[i].d+i > n-1) return 0; //如果度数大于所有点的个数
for(int j = i+1; j <= p[i].d+i; j++)
{
if(--p[j].d < 0) return false;
e[cnt++] = make_pair(p[i].id+1, p[j].id+1);
}
// cout << cnt << "*****" << endl;
}
return p[n-1].d == 0;
}
bool check(node *p, pair<int, int> *e)
{
int cnt = 0, res = 0;
for(int i = 0; i < n-1; i++)
{
sort(p+i, p+n);
int tmp = p[i].d + i;
if(tmp < n-1 && p[tmp].d == p[tmp+1].d && p[tmp].d != 0)
{
res = 1;
swap(p[tmp].id, p[tmp+1].id);
}
for(int j = i+1; j <= tmp; j++)
p[j].d--, e[cnt++] = make_pair(p[i].id+1, p[j].id+1);
}
return res;
}
void print(pair<int, int> *e)
{
printf("%d %d\n", n, tot);
for(int i = 0; i < tot; i++) printf("%d%c", e[i].first, i == tot-1 ? '\n' : ' ');
for(int i = 0; i < tot; i++) printf("%d%c", e[i].second, i == tot-1 ? '\n' : ' ');
if(tot == 0) printf("\n\n");
}
int main()
{
while(~scanf("%d", &n))
{
tot = 0;
for(int i = 0; i < n; i++)
{
scanf("%d", &p[0][i].d);
p[0][i].id = i;
p[1][i] = p[0][i];
tot += p[0][i].d;
}
if(tot&1) puts("IMPOSSIBLE"); //一条边肯定增加2个度
else
{
tot /= 2;
if(!solve(p[0], e1)) puts("IMPOSSIBLE");
else
{
if(check(p[1], e2))
{
puts("MULTIPLE");
print(e1);
print(e2);
}
else
{
puts("UNIQUE");
print(e1);
}
}
}
}
return 0;
}