矩形屏障弱覆盖与双源最小成本完美匹配延迟问题研究
在当今的科技领域,传感器网络的覆盖问题以及在线匹配问题都有着至关重要的应用。下面将详细探讨矩形屏障弱覆盖问题以及双源最小成本完美匹配延迟问题。
矩形屏障弱覆盖问题
在矩形区域中使用移动传感器建立弱屏障覆盖(WCR),以检测垂直于矩形边方向的任何穿越,这一问题涉及到传感器移动的优化。主要考虑了三种典型的优化指标:MinSum、MinMax和MinNum。
MinNum - WCR问题
- 算法原理 :当存在间隙时,根据鸽巢原理,必然存在一行(或列)包含多个传感器,这些传感器为Type 1类型。其中一个传感器可以沿着其列(或行)滑动以填补行间隙,且不会产生列间隙或其他行间隙。
- 最优性证明 :
- 给定输入配置,有r个空行和c个空列,假设r ≥ c。至少需要移动r个传感器来覆盖所有空行,所以r是移动传感器数量的下限。
- 若k ≥ c,算法恰好移动r个传感器,在最初两种情况下是最优的。
- 若k < c,M中的传感器最多可覆盖k个行和列间隙。由于M的最大性,其余传感器都不是自由的,移动它们必须通过滑动移动,每次最多减少一个行间隙或列间隙。因此,总共需要移动k + (c - k) + (r - k)个传感器,算法在这种情况下也是最优的。
- 时间复杂度 :给定传感器坐标列表,可在O(n)时间内计算每行和每列的节点数量列表。通过O(n)扫描这些
超级会员免费看
订阅专栏 解锁全文
125

被折叠的 条评论
为什么被折叠?



