人工智能和神经网络

版权声明:系CDA数据分析师原创作品,转载需授权 https://blog.csdn.net/yoggieCDA/article/details/86674822


人工智能的发展飞快,这也得益于人工智能的技术成熟。而人工智能离不开神经网络,神经网络在人工智能的发展中也是走过了十分崎岖的道路,那么究竟是怎么一回事呢?我们在这篇文章中给大家介绍一下这个问题。

每一个科学的技术发展进程都是十分相似的,如果我们从历史来看,就能够发展一件十分有意思的事情,重大科学的研究往往呈螺旋形上升的过程,不可能一蹴而就,每一次基础科学研究的重大进步,科技应用的重大突破,往往先由一两个领军人物偶然点破,而后大家争相研究,于是就在很短的时间内做出大量更具突破性的成果,同时带来相关产业界的革命性增长。而神经网络也是这样的。人工神经网络正是机器学习领域几十年来积累诞生的重大科学研究和工程应用成果,当前深度学习被看作是通向人工智能的关键技术,得到了很多科学家的重视。

首先说说什么是神经网络吧,神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络是机器学习的一个方向,而机器学习的另一个方向就是支持向量机。而以支持向量机为代表的浅层学习技术十分火爆,但是机器学习技术却很少投入使用中,后来神经网络方面的技术得到的实质性的改变,逐渐走出实验室,在学术界研究和产业界应用都得以应用。

神经网络的大起大落代表了人工智能的三个泡沫期,这给过分热衷深度学习技术与人工智能研究应用的人来讲,也是该降降温的,期望越大,失望越大,毕竟深度学习技术没有想象中的那么强大,至少在智能算法层面的突破很有限。换个角度看,深度学习的兴起,很可能是因为机器学习算法研究几十年迟迟无重大进展。

我们在这篇文章中给大家讲述的人工智能和神经网络的发展,从中我们可以看出人工智能的发展是离不开机器学习的,而机器学习又离不开神经网络,所以我们要想做好人工智能,那就不要丢下神经学习,唯有并驾齐驱,相互帮助,才能把智能科技发展的道路走得更远更牢。

没有更多推荐了,返回首页