深度学习
文章平均质量分 88
记录深度学习基础范畴,跟踪前沿科技,不定时更新~
明月醉窗台
路漫漫其修远兮,吾将上下而求索
接视觉算法类各种商务合作,算法实现,具体可联系w:1301863091
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习(16)YOLO中的置信度和IOU阈值在训练中及推理中后处理结果的影响
同时,YOLO也使用一个IOU阈值(如ignore_thresh,通常设为0.5-0.7)来处理“模棱两可”的预测框:如果一个预测框与任何真实框的IOU大于此阈值,但又不是最大那个(即它不是被选中的正样本),则忽略它——既不把它当正样本学,也不把它当负样本(背景)学。提高这个匹配阈值(如设为0.6),意味着只有预测得更准的框才被赋予学习责任,这会让模型对定位精度的要求更严格,但可能使正样本(需要学习的框)减少,训练难度增加。阈值设置过低:过滤宽松,大量预测框(包括很多错误的背景预测)会进入下一环节。原创 2026-01-18 17:30:46 · 583 阅读 · 0 评论 -
RT-DETR全解析:超越 YOLO,实时物体检测更快更精准(附代码)
RT-DETR为实时物体检测任务提供了一个新的解决方案,一个模型的优秀不仅仅只看它的速度和精度,它出彩的设计理念让它真正被人们记住,至于算不算“YOLO终结者”,我认为看完整篇文章,你应该有自己的看法了,欢迎在评论区讨论交流哦!为了弥补这一缺点,RT-DETR进行了优化,使得其不仅继承了Transformer的优势,还能够在保持较高精度的同时,大大提高了推理速度。在传统的DETR中,解码器通常需要大量的计算来匹配物体和查询,但RT-DETR在此基础上进行了改进,通过更高效的解码机制加速了计算过程。转载 2025-05-20 09:44:02 · 1092 阅读 · 0 评论 -
Windows 下打包labelimg 详细过程总结
Windows 下打包labelimg 详细过程总结原创 2025-02-17 22:01:53 · 1001 阅读 · 0 评论 -
深度学习(15)从头搭建模型到训练、预测示例总结
深度学习(15)从头搭建模型到训练、预测示例总结原创 2024-12-16 23:08:54 · 2635 阅读 · 0 评论 -
深度学习(14)网络模型结构及术语总结
深度学习(14)网络模型结构及术语总结原创 2024-12-16 22:33:28 · 940 阅读 · 0 评论 -
深度学习(13)之YOLO算法改进史——已更新至YOLO11
YOLO算法改进史——已更新至YOLO11转载 2024-10-17 21:35:24 · 1265 阅读 · 0 评论 -
【CVPR2024】Efficient LoFTR: 高效的 LoFTR:具有类似稀疏的速度的半密集局部特征匹配
【CVPR2024】Efficient LoFTR: 高效的 LoFTR:具有类似稀疏的速度的半密集局部特征匹配原创 2024-07-30 21:00:00 · 3865 阅读 · 0 评论 -
【CVPR2021】LoFTR:基于Transformers的无探测器的局部特征匹配方法
【CVPR2021】LoFTR:基于Transformers的无探测器的局部特征匹配方法原创 2024-06-18 21:18:34 · 8646 阅读 · 0 评论 -
深度学习(12)之模型训练[训练集、验证集、过拟合、欠拟合]
深度学习(12)之模型训练[训练集、验证集、过拟合、欠拟合]原创 2023-10-19 22:28:47 · 1817 阅读 · 0 评论 -
openvino部署yolov8 检测、分割、分类及姿态模型实例详解
openvino部署yolov8 检测、分割、分类及姿态模型实例详解原创 2023-07-22 18:11:17 · 3035 阅读 · 34 评论 -
模型实战(14)之YOLOv8+Deepsort 实现车辆跟踪+计数 详解
yolov8+deepsort实现车辆跟踪与计数原创 2023-07-09 21:37:22 · 2197 阅读 · 14 评论 -
深度学习(11)之Anchor-Free详解
在生成目标候选框阶段,排名top-k的左上角和右下角角点被从heatmaps中选择出来,然后,计算一对角点间的嵌入向量的距离,如果距离小于预设的阈值,就认为这两个点属于同一个物体,就会根据这两个角点生成一个bounding box,同时,根据两个角点的得分计算一个平均分数作为该bounding box的得分。然后在预测的时候,如果top-left的corner和bottom-right的corner的embedding值特别接近,比如一个是1.2另一个是1.3,那么这两个很有可能属于一个目标;转载 2023-07-02 08:57:11 · 8265 阅读 · 0 评论 -
深度学习(10)之Roboflow 使用详解:数据集标注、训练 及 下载
Roboflow 使用详解:数据集标注、训练 及 下载原创 2023-06-23 19:56:41 · 61703 阅读 · 14 评论 -
深度学习(9)之 easyOCR使用详解
python-easyOCR之字符识别原创 2023-04-22 10:11:44 · 26771 阅读 · 3 评论 -
windows下安装虚拟环境保存在C盘之解决方案
windows下安装虚拟环境保存在C盘之解决方案原创 2023-04-15 19:26:38 · 3750 阅读 · 3 评论 -
深度学习(8)之 UNet详解(附图文和代码实现)
UNet详解(附图文和代码实现)原创 2023-04-01 21:21:04 · 11970 阅读 · 1 评论 -
深度学习(7)之图像抠图 Image Matting算法调研
深度学习(7)之图像抠图 Image Matting算法调研原创 2023-04-01 14:50:28 · 4819 阅读 · 0 评论 -
【ICCV2022】 KAPAO:一种高效的单阶段人体姿态估计模型
【ICCV2022】 CAPAO:一种高效的单阶段人体姿态估计模型原创 2023-02-27 18:04:51 · 3117 阅读 · 5 评论 -
深度学习(6)之卷积的几种方式:1D、2D和3D卷积的不同卷积原理(全网最全!)
深度学习(6)之卷积的几种方式:1D、2D和3D卷积的不同卷积原理(全网最全!)转载 2023-02-27 11:21:56 · 9782 阅读 · 1 评论 -
【IEEE2021】CoEx:通过引导成本体积激励的实时立体匹配模型
【IEEE】CoEx:通过引导成本体积激励的实时立体匹配模型原创 2022-11-02 19:30:00 · 2110 阅读 · 7 评论 -
【CVPR2018】PSMNet:一个基于金字塔的端到端立体匹配网络
【CVPR2018】PSMNet:一个基于金字塔的端到端立体匹配网络原创 2022-10-28 11:00:03 · 3366 阅读 · 0 评论 -
【CVPR2022】 E2EC:一种基于端到端轮廓的高质量高速实例分割方法
提出了一种基于端到端轮廓的实例分割方法E2EC原创 2022-09-04 21:46:39 · 2654 阅读 · 11 评论 -
一键抠图Portrait Matting人像抠图 (C++和Android源码)
一键抠图Portrait Matting人像抠图 (C++和Android源码) 目录 一键抠图Portrait Matting人像抠图 (C++和Android源码) 1. 项目介绍: 2. MODNet抠图算法: 3. Matting数据集 (1) 开源数据集 (2) 训练和测试数据说明 (3) 合成代码实现 4. Android JNI接口 5. Demo测试效果 ...转载 2022-05-31 12:17:26 · 1154 阅读 · 4 评论 -
深度学习(5)之---目标检测综述:R-CNN、mask-RCNN、YOLO、SSD原理详解
目标检测综述:R-CNN、mask-RCNN、YOLO、SSD原理详解转载 2022-04-30 18:40:33 · 4250 阅读 · 0 评论 -
深度学习(4)之目标检测模型综述:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
目标检测模型综述:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD 前言 之前我所在的公司七月在线开设的深度学习等一系列课程经常会讲目标检测,包括R-CNN、Fast R-CNN、Faster R-CNN,但一直没有比较好的机会深入(但当你对目标检测有个基本的了解之后,再看这些课程你会收益很大)。但目标检测这个领域实在是太火了,经常会看到...转载 2022-04-30 18:35:03 · 6413 阅读 · 2 评论 -
深度学习(3)之经典神经网络模型整理:神经网络、CNN、RNN、LSTM
经典神经网络模型整理:神经网络、CNN、RNN、LSTM CNN模型汇总LeNet5 模型AlexNet 模型VGG模型Inception Net(GoogleNet)模型ResNet (残差网络) RNN模型(循环神经网络)为什么需要RNNRNN结构 LSTM(长短期记忆网络)模型GRU模型计算重置门r~t~和候选状态计算更新门z~t~和当前状态h~t~ 神经网络基础知识 本周主要对于神经网络的相关知识进行了学习,本文先整理神经网络学习中所需的一些基础知识,而..转载 2022-04-30 18:05:54 · 19439 阅读 · 4 评论 -
深度学习(2)之机器学习(部分深度学习)算法原理简述
这是毕业前找工作时总结的知识,过了一年左右时间,竟然忘的差不太多,因为最近也在看关于AI方向的知识,所以对于自身的记忆又重新有了一个新的认识,没有什么比实践更能巩固思想的,也没有什么比时间更能冲淡回忆的,时间永远是记忆最永恒的敌人记录常用的机器学习算法原理,后边也有一些较为流行的神经网络方面的内容,放到文章里,不时复习研究...原创 2021-12-25 16:46:10 · 702 阅读 · 2 评论 -
深度学习(1)以目标跟踪阐述深度学习相关模型原理及特征提取方式详解
以目标跟踪阐述深度学习相关模型原理及特征提取方式详解跟踪方法分类2.特征表达2.1传统特征表达主要包括HOG、LBP、Harr-like、SIFT和颜色统计1.HOG:图像局部区域梯度加权直方图,一般针对灰度图像,对背景光照变化和目标微量性形变具有不变性2.LBP:局部二值化3.Haar-like:基于哈尔小波变换所设计,采用积分图进行快速运算,早期常用于进行人脸特征提取4.SIFT特征:它是一种多尺度的、基于梯度方向特征的特征点提取方法,是传统特征的集大成者,对旋转、尺度变化、光原创 2021-12-22 18:58:03 · 4086 阅读 · 0 评论
分享