11. 盛最多水的容器
难度 中等
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
**说明:**你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解法一
首先,用暴力解法尝试,暴力解法是其他解法的基础。
思路是:枚举所有子区间的可盛水面积,找出最大的面积。
用了两重循环,时间复杂度为 O ( n 2 ) O(n^2) O(n2)。
class Solution {
public int maxArea(int[] height) {
int maxAns = 0;
for(int i=0;i<height.length-1;i++){
for(int j=i+1;j<height.length;j++){
int a = Math.min(height[i],height[j])*(j-i);
maxAns = a > maxAns ? a : maxAns;
}
}
return maxAns;
}
}
解法二
题目为区间搜索问题,暴力解法枚举出所有区间,存在大量冗余,可以考虑使用首尾双指针搜索子区间。
使用双指针的难点在于,如何移动左右指针?
我们假设一种情况:
i , j , h e i g h t [ i ] < h e i g h t [ j ] i, j, height[i]<height[j] i,j,height[i]<height[j]
此时的面积为 m i n ( h e i g h t [ i ] , h e i g h t [ j ] ) ∗ ( j − i ) = h e i g h t [ i ] ∗ ( j − i ) min(height[i],height[j]) * (j-i)=height[i] * (j-i) min(height[i],height[j])∗(j−i)=height[i]∗(j−i)
无论如何移动指针,区间长度 ( j − i ) (j-i) (j−i)都会变小。
假设移动左指针i:
- 若 h e i g h t [ i + 1 ] > = h e i g h t [ j ] height[i+1]>=height[j] height[i+1]>=height[j],则面积= h e i g h t [ j ] ∗ ( j − i ) height[j] * (j-i) height[j]∗(j−i),面积变化不确定。
- 若 h e i g h t [ i + 1 ] < = h e i g h t [ i ] height[i+1]<=height[i] height[i+1]<=height[i],则面积= h e i g h t [ i + 1 ] ∗ ( j − i ) height[i+1] * (j-i) height[i+1]∗(j−i),面积变小。
- 若 h e i g h t [ i ] < h e i g h t [ i + 1 ] < h e i g h t [ j ] height[i]<height[i+1]<height[j] height[i]<height[i+1]<height[j],则面积= h e i g h t [ i + 1 ] ∗ ( j − i ) height[i+1] * (j-i) height[i+1]∗(j−i),面积变化不确定。
假设移动右指针j:
- 若 h e i g h t [ j + 1 ] > = h e i g h t [ j ] height[j+1]>=height[j] height[j+1]>=height[j],则面积= h e i g h t [ i ] ∗ ( j − i ) height[i] * (j-i) height[i]∗(j−i),面积变小。
- 若 h e i g h t [ j + 1 ] < = h e i g h t [ i ] height[j+1]<=height[i] height[j+1]<=height[i],则面积= h e i g h t [ i + 1 ] ∗ ( j − i ) height[i+1] * (j-i) height[i+1]∗(j−i),面积变小。
- 若 h e i g h t [ i ] < h e i g h t [ j + 1 ] < h e i g h t [ j ] height[i]<height[j+1]<height[j] height[i]<height[j+1]<height[j],则面积= h e i g h t [ i ] ∗ ( j − i ) height[i] * (j-i) height[i]∗(j−i),面积变小。
可见,只有移动较短边的指针,才使得面积有变大的可能。
class Solution {
public int maxArea(int[] height) {
int left = 0, right = height.length-1;
int maxAns = 0;
while(left<right){
int tempArea = Math.min(height[left], height[right])*(right-left);
maxAns = tempArea>maxAns ? tempArea:maxAns;
// 只有移动较短的边,才有可能使面积变大
if(height[left]<height[right]){
left++;
}else{
right--;
}
}
return maxAns;
}
}
时间复杂度为 O ( n ) O(n) O(n)。