【leetcode】11. 盛最多水的容器

11. 盛最多水的容器

难度 中等

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

**说明:**你不能倾斜容器,且 n 的值至少为 2。

img

图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例:

输入:[1,8,6,2,5,4,8,3,7]
输出:49

解法一

首先,用暴力解法尝试,暴力解法是其他解法的基础。

思路是:枚举所有子区间的可盛水面积,找出最大的面积。

用了两重循环,时间复杂度为 O ( n 2 ) O(n^2) O(n2)

class Solution {
    public int maxArea(int[] height) {
        int maxAns = 0;
        for(int i=0;i<height.length-1;i++){
            for(int j=i+1;j<height.length;j++){
                int a = Math.min(height[i],height[j])*(j-i);
                maxAns = a > maxAns ? a : maxAns;
            }
        }
        return maxAns;
    }
}

解法二

题目为区间搜索问题,暴力解法枚举出所有区间,存在大量冗余,可以考虑使用首尾双指针搜索子区间。

使用双指针的难点在于,如何移动左右指针?

我们假设一种情况:

i , j , h e i g h t [ i ] < h e i g h t [ j ] i, j, height[i]<height[j] i,j,height[i]<height[j]

此时的面积为 m i n ( h e i g h t [ i ] , h e i g h t [ j ] ) ∗ ( j − i ) = h e i g h t [ i ] ∗ ( j − i ) min(height[i],height[j]) * (j-i)=height[i] * (j-i) min(height[i],height[j])(ji)=height[i](ji)

无论如何移动指针,区间长度 ( j − i ) (j-i) (ji)都会变小

假设移动左指针i:

  • h e i g h t [ i + 1 ] > = h e i g h t [ j ] height[i+1]>=height[j] height[i+1]>=height[j],则面积= h e i g h t [ j ] ∗ ( j − i ) height[j] * (j-i) height[j](ji)面积变化不确定
  • h e i g h t [ i + 1 ] < = h e i g h t [ i ] height[i+1]<=height[i] height[i+1]<=height[i],则面积= h e i g h t [ i + 1 ] ∗ ( j − i ) height[i+1] * (j-i) height[i+1](ji)面积变小
  • h e i g h t [ i ] < h e i g h t [ i + 1 ] < h e i g h t [ j ] height[i]<height[i+1]<height[j] height[i]<height[i+1]<height[j],则面积= h e i g h t [ i + 1 ] ∗ ( j − i ) height[i+1] * (j-i) height[i+1](ji)面积变化不确定

假设移动右指针j:

  • h e i g h t [ j + 1 ] > = h e i g h t [ j ] height[j+1]>=height[j] height[j+1]>=height[j],则面积= h e i g h t [ i ] ∗ ( j − i ) height[i] * (j-i) height[i](ji)面积变小
  • h e i g h t [ j + 1 ] < = h e i g h t [ i ] height[j+1]<=height[i] height[j+1]<=height[i],则面积= h e i g h t [ i + 1 ] ∗ ( j − i ) height[i+1] * (j-i) height[i+1](ji)面积变小
  • h e i g h t [ i ] < h e i g h t [ j + 1 ] < h e i g h t [ j ] height[i]<height[j+1]<height[j] height[i]<height[j+1]<height[j],则面积= h e i g h t [ i ] ∗ ( j − i ) height[i] * (j-i) height[i](ji)面积变小

可见,只有移动较短边的指针,才使得面积有变大的可能。

class Solution {
    public int maxArea(int[] height) {
        int left = 0, right = height.length-1;
        int maxAns = 0;
        while(left<right){
            int tempArea =  Math.min(height[left], height[right])*(right-left);
            maxAns = tempArea>maxAns ? tempArea:maxAns;
            // 只有移动较短的边,才有可能使面积变大
            if(height[left]<height[right]){
                left++;
            }else{
                right--;
            }
        }
        return maxAns;
    }
}

时间复杂度为 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值