机器学习和深度学习之数学基础-线性代数 第一节 向量及线性映射

本文深入探讨了机器学习和深度学习中的线性代数基础知识,重点讲解了向量的概念、向量空间的性质、线性组合、线性无关与张成、向量空间的基和维数。通过实例解释了线性映射的定义及其在欧氏空间中的应用,展示了如何通过线性映射将一个向量空间转换到另一个空间。此外,还介绍了零空间、值域以及线性映射的矩阵表示,强调了线性映射在实际问题中的重要性。
摘要由CSDN通过智能技术生成

本文为原创文章,欢迎转载,但请务必注明出处。

线性代数是机器学习和深度学习算法的数学基础之一,这个系列的文章主要描述在AI算法中可能涉及的线性代数相关的基本概念和运算。本文主要参考Garrett Thomas(2018),Marc Peter Deisenroth(2018),Strang(2003),José Miguel Figueroa-O’Farrill, Isaiah Lankham(UCD, MAT67,2012)等教授的相关讲座和教材。本文的主要内容包括向量的基本概念,向量空间,线性组合、线性无关、线性相关、基以及线性映射。

1、向量的基本概念

线性代数的研究对象是向量(vector),在数学上通常称之为“几何向量(geometric vector)”,使用 x x → y y → 等来表示(如图一所示),这个时候,向量就可以表示为空间的一个点。而在计算机领域,向量通常使用黑体小写字母表示,如 x x y y
二维空间中的两个向量

图一: 二维空间的两个向量。空间内的向量可以用空间中对应的点表示。

通常,满足以下两个运算条件的对象都可以看成是向量:

  • 对象之间可以进行相加运算;
  • 对象可以乘以一个标量得到同样类型的另一个对象。

比如向量 x x y y 可以相加: x+y=z x + y = z , 那么 z z 也是向量; 另外,向量 x x 乘以标量 λ λ ∈ R 得到 λx λ x 也是向量。从这个角度来说,多项式(polynomials)也是向量(两个多项式相加仍是多项式,一个多项式乘以一个标量同样还是多项式)。 还有,任何数字信号也是向量。

图二表示了向量相加及向量与标量相乘,其中(a)表示两个向量相加,其结果向量的长度是是两个向量组成的平行四边形的对角线的长度,方向与两个向量的方向相同;(b)是向量与标量相乘,其结果向量与原向量在同一个直线上,方向由标量的符号决定(正为同方向,负为反方向),结果向量的长度由标量的绝对值决定,如果标量的绝对值在0和1之间,那么向量的长度被同比例压缩;如果标量的绝对值的绝对值大于或等于1,那么向量的长度被同比拉升;(c)是表示了一个三维空间的向量。三维空间里,两个向量(如果不在一个直线上)可以确定一个平面,3个向量(如果不在同一个直线或同一个平面上)可以确定一个立体柱体。
向量相加和标量相乘

图二:向量相加及向量与标量相乘

需要说明的是向量和计算机语言中的数组是不同概念。数组是计算机编程语言的一种数据结构,不具有向量的运算特性,比如python中 list 和 numpy 中的 array 是有本质区别的,虽然他们都有类似的编程访问特性(比如都可以根据下标随机访问任何一个元素,可以切片访问一个子序列等),但是只有 array 实现了向量的运算(比如向量的内积运算等)。

2、向量空间

向量空间(vector space,又称为线性空间)是线性代数的基本概念之一。本文开始提到了成为向量所需要的两种运算条件(或两个特性),而向量空间的定义就是基于这两个特性。向量空间定义:一个向量空间 V V 是向量的集合,在这个集合上定义了向量的两种运算:

  • 向量之间可以相加,即 x + y V , 其中 x,yV x , y ∈ V

    • 向量可以乘以一个称为标量(scalar)的实数,即 αxV α x ∈ V , 其中 xV,α x ∈ V , α ∈ R
    • 以上两个条件又构成了向量空间的“闭包”(closure)特性。也就是说,向量空间中的向量进行以上两种运算后,其结果仍然在该向量空间中。

      向量空间 V V 必须满足:

      • 存在加法单位元,记作 0 (即零向量),使得 x+0=x x + 0 = x , 这里 xV x ∈ V

      • 对于任意 xV x ∈ V , 存在加法逆元(又称为相反数),记作 x − x ,使得 x+(x)=0 x + ( − x ) = 0
      • 在实数集 R 中存在乘法单位元,记为 1,使得 1x=x 1 x = x ,这里 xV x ∈ V
      • 交换律(commutativity): x+y=y+x x + y = y + x ;
      • 结合律(associativity): (x+y)+z=x+(y+z) ( x + y ) + z = x + ( y + z ) α(βx)=(αβ)x α ( β x ) = ( α β ) x , 这里 x,y,zV,α,β x , y , z ∈ V , α , β ∈ R
      • 分配律(distributivity): α(x+y)=αx+αy α ( x + y ) = α x + α y (α+β)x=αx+βx ( α + β ) x = α x + β x , 这里 x,yV,α,β x , y ∈ V , α , β ∈ R
      • 3、线性组合、线性无关、向量张成与向量空间的基

        3.1、线性组合

        线性组合(linear combination)定义:对于向量空间 V V 中的一组非零向量集 v 1 , v 2 , . . . , v n ,且一组标量(即实数) α1,α2,...,αn α 1 , α 2 , . . . , α n ,则等式

        i=1nαivi=α1v1+α2v2+...+αnvn ∑ i = 1 n α i v i = α 1 v 1 + α 2 v 2 + . . . + α n v n

        称为向量空间 V V 中向量集 v 1 , v 2 , . . . , v n 的线性组合。

        3.2、线性无关与线性有关

        线性无关(linearly independent)定义:对于向量空间 V V 中的一组非零向量集 v 1 , v 2 , . . . , v n ,当且仅当 α1=α2=...=αn=0 α 1 = α 2 = . . . = α n = 0 时,等式

        α1v1+α2v2+...+αnvn=0 α 1 v 1 + α 2 v 2 + . . . + α n v n = 0

        成立,那么称非零向量集 v1,v2,...,vn v 1 , v 2 , . . . , v n 是线性无关的。

        如果存在一个 αi0 α i ≠ 0 使得上式成立,那么称非零向量集 v1,v2,...,vn v 1 , v 2 , . . . , v n 线性相关的 (linearly dependent)。 这说明在这 n n 个向量中,其中至少有一个向量是剩下的 n 1 个向量的线性组合。比如,假设 α10 α 1 ≠ 0 , 那么根据上式,有

        v1+α2α1v2+...+αnα1vn=0 v 1 + α 2 α 1 v 2 + . . . + α n α 1 v n = 0

        那么,有
        v1=α2α1v2...αnα1v
  • 13
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值