机器学习和深度学习之数学基础-线性代数 第二节 矩阵的概念及运算

本文为原创文章,欢迎转载,但请务必注明出处。

上文介绍了线性映射,而与线性映射直接相关的就是矩阵,它决定了线性映射的结果,这里介绍矩阵的一些基本概念和运算。包括矩阵的转置、逆、特征值与特征向量、投影、正交矩阵、对称矩阵、正定矩阵、内积和外积、SVD、二次型等基本概念。本文主要参考Garrett Thomas(2018),Marc Peter Deisenroth(2018),Strang(2003),José Miguel Figueroa-O’Farrill, Isaiah Lankham(UCD, MAT67,2012)等教授的相关讲座和教材。

1、 矩阵的转置

矩阵转置的定义很简单,矩阵的转置就是将矩阵的行变为列,即 Am×n A ∈ R m × n , 那么转置 An×m A ⊤ ∈ R n × m ,且 (A)ij=Aji ( A ⊤ ) i j = A j i

转置的性质:

  • (A)=A ( A ⊤ ) ⊤ = A
  • (A+B)=A+B ( A + B ) ⊤ = A ⊤ + B ⊤
  • (αA)=αA ( α A ) ⊤ = α A ⊤
  • (AB)=BA ( A B ) ⊤ = B ⊤ A ⊤

A=A A ⊤ = A , 那么 A A 称为对称矩阵(symmetric)。任何一个矩阵都可以是一个对称矩阵和反对称矩阵(antisymmetric)的和:

A=12(A+A)+12(AA) A = 1 2 ( A + A ⊤ ) + 1 2 ( A − A ⊤ )

其中, 12(A+A) 1 2 ( A + A ⊤ ) 是对称矩阵, 12(AA) 1 2 ( A − A ⊤ ) 是反对称矩阵。

2、可逆矩阵(invertible matrix)

一个方阵 An×n A ∈ R n × n 可逆当且仅当存在一个方阵 Bn×n B ∈ R n × n 使得

AB=I A B = I

其中 In×n I ∈ R n × n 为单位矩阵。那么方阵 B B 为方阵 A A 的逆矩阵,记作 A1 A − 1

如果矩阵 An×n A ∈ R n × n ,那么下面的说法等价:

  • A A 可逆
  • A A 不是奇异矩阵(non-singular)
  • 行列式 det(A)0 d e t ( A ) ≠ 0
  • A A 满秩,即 rank(A=n) r a n k ( A = n )
  • Ax=0 A x = 0 只有唯一解: x=0 x = 0
  • A A 的零空间只有零向量: { 0} { 0 } ,即 null(A)=0 n u l l ( A ) = 0
  • A A 的列向量线性无关
  • A A 的列向量的张成是整个 n R n 空间。
  • A A 的列向量构成 n R n 的一个基向量集
  • 存在方阵 Bn×n B ∈ R n × n 使得 AB=I=BA A B = I = B A .
  • 转置 A A ⊤ 是可逆矩阵,于是,矩阵 A A 的行向量是线性无关的,张成是 n R n 空间,同时构成了 n R n 的一个基向量集。
  • A A 不存在值为0的特征值。
  • A A 可以表示为有限个初等矩阵的乘积。
  • A A 有左逆矩阵(即 BA=I B A = I )和 右逆矩阵(即 AC=I A C = I ),且 B=C=A1 B = C = A − 1

可逆矩阵 A A 的一些重要性质:

  • (A1)1=A ( A − 1 ) − 1 = A ;
  • (αA)1=α1A1 ( α A ) − 1 = α − 1 A − 1 ,这里实数标量 α0 α ≠ 0
  • (A)1=(A1) ( A ⊤ ) − 1 = ( A − 1 ) ⊤
  • (AB)1=B1A1 ( A B ) − 1 = B − 1 A − 1 ,其中 Bn×n B ∈ R n × n 是可逆矩阵。 更一般情况,如果方阵 A1,...Ak A 1 , . . . A k 可逆,那么 (A1...Ak)1=A1k...A11 ( A 1 . . . A k ) − 1 = A k − 1 . . . A 1 − 1 .
  • det(A1)=(det(A))1 d e t ( A − 1 ) = ( d e t ( A ) ) − 1

如果方阵 A A 的逆矩阵就是它自身,即 A=A1 A = A − 1 , 那么有 A2=I A 2 = I ,这是方阵 A A 就叫对合矩阵(involutory matrix)。

3、矩阵的列空间(columnspace)和行空间(rowspace), 矩阵的秩(rank)

矩阵 Am×n A ∈ R m × n 列空间(columnspace)是指其列向量(看成是 m R m 中的向量)的张成; 类似的,行空间(rowspace)是指其行向量(看成是 n R n 中的向量)的张成。

矩阵 A A 的列空间等于由矩阵 A A 导致的线性映射 nm R n → R m 的值域, 即 range(A) r a n g e ( A )

矩阵 Am×n A ∈ R m × n 列秩是矩阵 A A 的线性无关的列向量的最大数量。类似地,行秩是矩阵 A A 的线性无关的行向量的最大数量。 矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 A A 的秩,通常表示为 r(A) r ( A ) rank(A) r a n k ( A )

4、范数(norm)和内积(inner product)

4.1、范数(norm)

范数(norm)是对欧氏空间距离的一般描述。在实数向量空间 V V 的一个范数是一个函数 : V R ,并且满足:

  • x0 ‖ x ‖ ≥ 0 , 当且仅当 x=0 x = 0 等号成立;
  • αx=|α|x ‖ α x ‖ = | α | ‖ x ‖
  • x+yx+y ‖ x + y ‖ ≤ ‖ x ‖ + ‖ y ‖ (三角不等式)

注意在 V V 上的任何范数都会引出一个在 V 上的距离度量: d(x,y)=xy d ( x , y ) = ‖ x − y ‖

常用的范数包括:

x1=i=1n|xi| ‖ x ‖ 1 = ∑ i = 1 n | x i |

x2=i=1nx2i ‖ x ‖ 2 = ∑ i = 1 n x i 2

xp=(i=1n|xi|p)1p,(p1) ‖ x ‖ p = ( ∑ i = 1 n | x i | p ) 1 p , ( p ≥ 1 )

x=max1in|xi| ‖ x ‖ ∞ = m a x 1 ≤ i ≤ n | x i |

图一,不同范数在二维平面的示例

图一,不同范数在二维平面的示例

4.2、内积(inner product)

在实数向量空间 V V 的一个内积是一个函数 : V × V R ,并且满足:

  • x,x0 ⟨ x , x ⟩ ≥ 0 ,当且仅当 x=0 x = 0 等号成立
  • x+y,z=x,z
  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值