【Mapreduce】从代码上解决Output directory already exists错误,避免每次调试都要手动删除输出文件夹

Mapreduce调试很蛋疼的,它不会覆盖上一次输出的结果,如果发现输出文件夹已经存在,比如我的调试输出文件夹是hdfs://192.168.230.129:9000/output,它会直接给你报如下错误:

Exception in thread "main" org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://192.168.230.129:9000/output already exists
	at org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:123)
	at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:770)
	at org.apache.hadoop.mapreduce.Job.submit(Job.java:432)
	at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:447)
	at MyMapReduce.main(MyMapReduce.java:65)

如下图所示:


当然,错误很明了,就是输出文件夹已存在。

不过网上有写很坑爹的教程,表示解决这个错误,要自己手动删除输出文件夹。

这很蛋疼,无论你这次调试成功还是报错与否,都要先刷新HDFS,再删除,再运行程序:


这是何其地蛋疼啊!其实可以在代码上利用hdfs的文件操作,解决这个问题。思想就是在代码运行之前,也就是提交作业之前,判断output文件夹是否存在,如果存在则删除。具体代码如下:

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class MyMapReduce {

	public static class MyMapper extends
			Mapper<Object, Text, Text, IntWritable> {
		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();

		public void map(Object key, Text value, Context context)
				throws IOException, InterruptedException {
			StringTokenizer itr = new StringTokenizer(value.toString());
			while (itr.hasMoreTokens()) {
				word.set(itr.nextToken());
				context.write(word, one);
			}
		}
	}

	public static class MyReducer extends
			Reducer<Text, IntWritable, Text, IntWritable> {
		private IntWritable result = new IntWritable();

		public void reduce(Text key, Iterable<IntWritable> values,
				Context context) throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable val : values) {
				sum += val.get();
			}
			result.set(sum);
			context.write(key, result);
		}
	}

	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();

		String[] otherArgs = new GenericOptionsParser(conf, args)
				.getRemainingArgs();
		if (otherArgs.length != 2) {
			System.err.println("Usage: wordcount <in> <out>");
			System.exit(2);
		}
		Job job = new Job(conf);
		job.setMapperClass(MyMapper.class);
		job.setReducerClass(MyReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);

		// 判断output文件夹是否存在,如果存在则删除
		Path path = new Path(otherArgs[1]);// 取第1个表示输出目录参数(第0个参数是输入目录)
		FileSystem fileSystem = path.getFileSystem(conf);// 根据path找到这个文件
		if (fileSystem.exists(path)) {
			fileSystem.delete(path, true);// true的意思是,就算output有东西,也一带删除
		}

		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}

}

关键就是如下这4行:

// 判断output文件夹是否存在,如果存在则删除
Path path = new Path(otherArgs[1]);// 取第1个表示输出目录参数(第0个参数是输入目录)
FileSystem fileSystem = path.getFileSystem(conf);// 根据path找到这个文件
if (fileSystem.exists(path)) {
	fileSystem.delete(path, true);// true的意思是,就算output有东西,也一带删除
}

教会Mapreduce这SB覆盖上一次运行结果,别只会在这报错!


评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值