Recurrent Convolutional Neural Networks for Text Classification

1.Abstract

传统:Traditional text classifiers often rely on many human-designed features, such as dictionaries, knowledge bases and special tree kernels.

提出
a recurrent structure ——> capture contextual information
a max-pooling layer——>capture the key components in texts

表现
particularly on document-level datasets.

2.Introduction

传统

feature representation:
bag-of-words: where unigrams, bigrams, n-grams or some exquisitely designed patterns are typically extracted as features.

several feature selection methods:
frequency, MI, pLSA, LDA

缺点传统的特征表达方法经常忽略了上下文的信息和词序信息,以及语义信息。
高阶n-gram,tree kernels被应用在特征表达,但是也有稀疏的缺点,影响准确性。
word embedding: word2vec 能够捕捉更多语法和语义特征。

改进

Recursive Neural Network
优点:获取上下文信息。
缺点:①效果完全依赖于文本树的构建,并且构建文本树所需的时间是O(n^2). 并且两个句子的关系也不能通过一颗树表现出来。因此不适合与长句子或者文本。
②有偏的模型(biased model),后面的词占得重要性更大。这样不好,因为每个词都可能是重要的词。

Convolutional Neural Network(CNN)
优点:①时间复杂度:O(n)
②无偏的模型(unbiased model),能够通过最大池化获得最重要的特征。
③CNN卷积器的大小固定,如果选小了容易造成信息的丢失;如果选大了,会造成巨大的参数空间

提出:

Recurrent Neural Network (RecurrentNN)
循环结构–>捕获上下文信息
最大池化层—>提取最可能的特征,即哪个单词是哪个特征的key role
(原文说法:哪个单词是key role)

3.模型

在这里插入图片描述
在这里插入图片描述

1 构造词向量的链接模式

对于每个词 i, c l ( w i ) c_l(w_i) cl(wi)代表i的上文的向量, c r ( w i ) c_r(w_i) cr(wi)代表i的下文的向量,这两个向量由公式(1)(2)公式求出:
在这里插入图片描述
(其中对于所有的输入句子,第一个单词的 c l ( w 1 ) c_l(w_1) cl(w1)用一样的参数,原文说法:The left-side context for the first word in any document uses the same shared parameters c l ( w 1 ) c_l(w_1) cl(w1).)
然后对于每个单词:用公式(3)链接到一起
![在这里插入图片描述](https://img-blog.csdnimg.cn/20191101111605657.png

2.压缩链接向量

对每个单词在公式(3)获得的 x i x_i xi由下面的公式进行压缩,得到图中圈出来的2
在这里插入图片描述

3.最大池化层

在这里插入图片描述
上图中的的每一列中找出最大的,其实每一列对应的就是每种特征。然后组成 y ( 3 ) y^{(3)} y(3)

为什么不用平均池化?
因为我们要找出句子中每个哪个单词最能代表某个特征,而不是求平均的特征值。原文:We do not use average pooling here because only a few words and their combination are useful for capturing the meaning of the document. The max-pooling layer attempts to find the most important latent semantic factors in the document.

最大池化层公式:(5)
在这里插入图片描述

4.特征加权 和 分类

特征加权在这里插入图片描述
softmax分类:
在这里插入图片描述

5.训练

所有需要训练的参数:
在这里插入图片描述
其中E是原始的embedding。(在该模型执行之前,已经进过了skip-gram进行求词向量,所以有E)

训练的目的:最大化如下公式
在这里插入图片描述

好像是2015年的论文。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值