There are exactly ten ways of selecting three from five, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
In combinatorics, we use the notation, 5C3 = 10.
In general,
nCr = |
n!
r!(n−r)! | ,where r ≤ n, n! = n×(n−1)×...×3×2×1, and 0! = 1. |
It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.
How many, not necessarily distinct, values of nCr, for 1 ≤ n ≤ 100, are greater than one-million?
#include <iostream>
#include <string>
using namespace std;
int c[101][101];
int main()
{
memset(c, 0, sizeof(c));
for (int i = 1; i <= 100; i++)
{
c[0][i] = 1;
c[1][i] = i;
c[i][i] = 1;
c[i - 1][i] = i;
}
int count = 0;
for (int n = 2; n <= 100; n++)
{
for (int r = 2; r < n; r++)
{
c[r][n] = c[r][n - 1] + c[r - 1][n - 1];
if (c[r][n]>1000000)
{
c[r][n] = 1000001;
count++;
}
}
}
cout << count << endl;
system("pause");
return 0;
}