Project Euler:Problem 53 Combinatoric selections

There are exactly ten ways of selecting three from five, 12345:

123, 124, 125, 134, 135, 145, 234, 235, 245, and 345

In combinatorics, we use the notation, 5C3 = 10.

In general,

nCr =
n!
r!(n−r)!
,where r ≤ nn! = n×(n−1)×...×3×2×1, and 0! = 1.

It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.

How many, not necessarily distinct, values of  nCr, for 1 ≤ n ≤ 100, are greater than one-million?


#include <iostream>
#include <string>
using namespace std;

int c[101][101];

int main()
{
	memset(c, 0, sizeof(c));
	
	for (int i = 1; i <= 100; i++)
	{
		c[0][i] = 1;
		c[1][i] = i;
		c[i][i] = 1;
		c[i - 1][i] = i;
	}
	int count = 0;
	for (int n = 2; n <= 100; n++)
	{
		for (int r = 2; r < n; r++)
		{
			c[r][n] = c[r][n - 1] + c[r - 1][n - 1];
			if (c[r][n]>1000000)
			{
				c[r][n] = 1000001;
				count++;
			}
		}
	}
	cout << count << endl;
	system("pause");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值