It is possible to show that the square root of two can be expressed as an infinite continued fraction.
√ 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...
By expanding this for the first four iterations, we get:
1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...
The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?
找规律,大数加法
#include <iostream>
#include <string>
using namespace std;
string strplus(string a, string b)
{
int lena = a.length();
int lenb = b.length();
int len;
if (lena <= lenb)
{
int gap = lenb - lena;
string c;
c.resize(gap, '0');
a = c + a;
len = lenb;
}
else
{
int gap = lena - lenb;
string c;
c.resize(gap, '0');
b = c + b;
len = lena;
}
int flag = 0;
string ans = "";
for (int i = len - 1; i >= 0; i--)
{
int tmp = a[i] + b[i] - '0' - '0' + flag;
flag = tmp / 10;
tmp = tmp % 10;
char p = tmp + '0';
ans = p + ans;
}
if (flag == 1)
ans = '1' + ans;
return ans;
}
int main()
{
string a = "3";
string b = "2";
int count = 0;
for (int i = 2; i <= 1000; i++)
{
string tmp = b;
b = strplus(a, b);
a = strplus(b, tmp);
if (a.length() > b.length())
count++;
}
cout << count << endl;
system("pause");
return 0;
}