Project Euler:Problem 67 Maximum path sum II

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

3
7 4
4 6
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom in triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows.

NOTE: This is a much more difficult version of Problem 18. It is not possible to try every route to solve this problem, as there are 299 altogether! If you could check one trillion (1012) routes every second it would take over twenty billion years to check them all. There is an efficient algorithm to solve it. ;o)


动态规划

#include <iostream>
#include <string>
#include <vector>
#include <fstream>
using namespace std;


int main()
{
	ifstream input;
	string line;
	input.open("triangle.txt");
	vector<vector<int>>data;
	vector<int>num;
	while (getline(input, line))
	{
		num.clear();
		int tmp = 0;
		for (int i = 0; i < line.length(); i++)
		{
			if (i % 3 == 2)
				continue;
			if (i % 3 == 1)
			{
				tmp = tmp * 10 + line[i] - '0';
				num.push_back(tmp);
				tmp = 0;
			}
			else
				tmp += line[i] - '0';
		}
		data.push_back(num);
	}
	input.close();
	
	for (int i = data.size() - 2; i >= 0; i--)
	{
		for (int j = 0; j < data[i].size(); j++)
		{
			data[i][j] = data[i + 1][j]>data[i + 1][j + 1] ? data[i][j] + data[i + 1][j] : data[i][j] + data[i + 1][j + 1];
		}
	}
	cout << data[0][0] << endl;
	system("pause");
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值