Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
n | Relatively Prime | φ(n) | n/φ(n) |
2 | 1 | 1 | 2 |
3 | 1,2 | 2 | 1.5 |
4 | 1,3 | 2 | 2 |
5 | 1,2,3,4 | 4 | 1.25 |
6 | 1,5 | 2 | 3 |
7 | 1,2,3,4,5,6 | 6 | 1.1666... |
8 | 1,3,5,7 | 4 | 2 |
9 | 1,2,4,5,7,8 | 6 | 1.5 |
10 | 1,3,7,9 | 4 | 2.5 |
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
直接求欧拉函数,然后除一下,比较一下就出结果了。
#include <iostream>
using namespace std;
int getEuler(int n)
{
int m = n;
int p = 2;
int k = 0;
while (p*p <= n)
{
k = 0;
while (n%p == 0)
{
n /= p;
k++;
}
if (k >= 1)
m = m / p*(p - 1);
p++;
}
if (n > 1)
m = m / n*(n - 1);
return m;
}
int main()
{
double maxe = 0.0, num;
for (int i = 2; i <= 1000000; i++)
{
int pp = getEuler(i);
double tmp = i*1.0 / pp;
if (tmp > maxe)
{
maxe = tmp;
num = i;
}
}
cout << num << " " << maxe << endl;
system("pause");
return 0;
}