【OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)

专栏地址:『youcans 的 OpenCV 例程 200 篇』
文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』


【youcans 的 OpenCV 例程 200 篇】15. 图像的加权加法(cv2.addWeight)


函数 cv2.addWeight() 用于图像的加权加法运算。

函数说明:

cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) → dst 

函数 cv2.addWeighted() 对两张相同大小和类型的图像按权重相加,可以实现图像的叠加和混合。加权加法的计算表达式为:

dst = src1 * alpha + src2 * beta + gamma

参数说明:

  • scr1, scr2:ndarray 多维数组,表示一个灰度或彩色图像
  • alpha:第一张图像 scr1 的权重,通常取为 0~1 之间的浮点数
  • beta:第二张图像 scr2 的权重,通常取为 0~1 之间的浮点数
  • gamma: 灰度系数,图像校正的偏移量,用于调节亮度
  • dtype 输出图像的深度,即每个像素值的位数,可选项,默认等于 src1.depth()
  • 返回值:dst,加权加法运算结果的图像数组

注意事项:

  1. 使用 cv2.addWeight() 函数对两张图片相加时,图片的大小和类型(通道数)必须相同。
  2. alpha,beta,gamma 可调,可以根据需要调整图像的权重,以达到不同的显示效果。推荐取 beta=1-alpha, gamma=0。

基本例程:1.24 图像的混合(加权加法)

    # 1.24 图像的混合(加权加法)
    img1 = cv2.imread("../images/imgGaia.tif")  # 读取图像 imgGaia
    img2 = cv2.imread("../images/imgLena.tif")  # 读取图像 imgLena

    imgAddW1 = cv2.addWeighted(img1, 0.2, img2, 0.8, 0)  # 加权相加, a=0.2, b=0.8
    imgAddW2 = cv2.addWeighted(img1, 0.5, img2, 0.5, 0)  # 加权相加, a=0.5, b=0.5
    imgAddW3 = cv2.addWeighted(img1, 0.8, img2, 0.2, 0)  # 加权相加, a=0.8, b=0.2

    plt.subplot(131), plt.title("1. a=0.2, b=0.8"), plt.axis('off')
    plt.imshow(cv2.cvtColor(imgAddW1, cv2.COLOR_BGR2RGB))  # 显示 img1(RGB)
    plt.subplot(132), plt.title("2. a=0.5, b=0.5"), plt.axis('off')
    plt.imshow(cv2.cvtColor(imgAddW2, cv2.COLOR_BGR2RGB))  # 显示 imgAddV(RGB)
    plt.subplot(133), plt.title("3. a=0.8, b=0.2"), plt.axis('off')
    plt.imshow(cv2.cvtColor(imgAddW3, cv2.COLOR_BGR2RGB))  # 显示 imgAddS(RGB)
    plt.show()

本例程运行结果如下:

在这里插入图片描述

(本节完)


【第2章:图像的数值运算】
13. 图像的加法运算(cv2.add)
14. 图像与标量相加(cv2.add)
15. 图像的加权加法(cv2.addWeight)
16. 不同尺寸的图像加法
17. 两张图像的渐变切换


版权声明:
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/125112487)
Copyright 2022 youcans, XUPT
Crated:2021-11-18
欢迎关注专栏: 『youcans 的 OpenCV 例程 200 篇』
更多内容请见:>『youcans 的 OpenCV 例程200篇 - 总目录』(https://blog.csdn.net/youcans/article/details/125112487)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youcans_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值