看完题目觉得题目挺复杂的,刚开始一看需要多个循环进行题目的处理,后来经过分析觉得题目没有那么复杂。
问题分析
题干给予了每个朋友i,他其他朋友的亲近度preferences[i]数组,从亲近程度从高到低进行排列。
也给予了pairs[i]数组,pairs[i]=[x,y],表示两个朋友进行配对。
判定的条件也在题目中给出了。
分析pairs[i]数组可得,很明确的得知其长度为n/2,每个朋友在配对pairs中出现仅出现一次。(可处理为一个长度n的数组,便于寻找寻找某个朋友的配对对象。)
对于preferences[i]数组,在数组中存储为亲近程度高到低的朋友的序号,在进行判定条件查找的过程是十分不利的,将preferences[i]数组重新存储为新数组temp,存储亲近程度的下标。两个数组可以同时应用。
要注意:
1.在x的亲近程度列表中,y的名次可能很高,但是在y的亲近程度列表中,x的名次可能很低。
2.对于一个匹配[x,y],x是否为不高兴的朋友与y是否为不高兴的朋友没有必然相关性。
问题解决
建立一个temp数组重新整理preferences数组。
然后循环n次,来进行判断,在这个过程中,匹配双方都要进行判定。
判定条件函数如下:
如果 p1的亲近程度中p2为亲近程度最高,则不需要判定;反之寻找p1亲近程度列表中亲近程度最高的朋友u,在寻找u的配对对象v,在u的亲近列表中判定u和p1的亲近程度是否有u和v高。若满足,则递归到p1亲近程度列表中亲近程度次高的朋友u‘,按同样的方法进行处理。简而言之,在p1亲近程度列表中,对于p2亲近程度前面的数进行处理。
总结
对于数据进行了预处理,以存储空间来换取循环简便以及判定条件的便利,存储换时间。
难点在于数据的预处理,保证数据的完整性便利性,达到模拟目的。