题目描述:
升序排列的整数数组 nums 在预先未知的某个点上进行了旋转(例如, [0,1,2,4,5,6,7] 经旋转后可能变为 [4,5,6,7,0,1,2] )。
请你在数组中搜索 target ,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。
示例 1:
输入:nums = [4,5,6,7,0,1,2], target = 0 输出:4
示例 2:
输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1
示例 3:
输入:nums = [1], target = 0
输出:-1
提示:
1 <= nums.length <= 5000
-10^4 <= nums[i] <= 10^4
nums 中的每个值都 独一无二
nums 肯定会在某个点上旋转
-10^4 <= target <= 10^4
题目解答:
二分搜索
思路和算法
题目要求算法时间复杂度必须是 O(\log n)O(logn) 的级别,这提示我们可以使用二分搜索的方法。
但是数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,这还能进行二分搜索吗?答案是可以的。
可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6 这个位置分开以后数组变成了 [4, 5, 6] 和 [7, 0, 1, 2] 两个部分,其中左边 [4, 5, 6] 这个部分的数组是有序的,其他也是如此。
这启示我们可以在常规二分搜索的时候查看当前 mid 为分割位置分割出来的两个部分 [l, mid] 和 [mid + 1, r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分搜索的上下界,因为我们能够根据有序的那部分判断出 target 在不在这个部分:
如果 [l, mid - 1] 是有序数组,且 target 的大小满足 (nums[l],nums[mid]),则我们应该将搜索范围缩小至 [l, mid - 1],否则在 [mid + 1, r] 中寻找。
如果 [mid, r] 是有序数组,且 target 的大小满足 (nums[mid+1],nums[r]],则我们应该将搜索范围缩小至 [mid + 1, r],否则在 [l, mid - 1] 中寻找。
代码:
public int search(int[] nums, int target) {
int n = nums.length;
if (n==0){
return -1;
}
if (n==1){
return nums[0]==target?0:-1;
}
int l=0,r=n-1;
while (l<=r){
int mid= l+(r-l)/2;
if (nums[mid]==target){
return mid;
}
if (nums[l]<=nums[mid]){
if (nums[l]<=target&&target<nums[mid]){
r=mid-1;
}else {
l=mid+1;
}
}else {
if (nums[mid]<target&&target<=nums[r]){
l=mid+1;
}else {
r=mid-1;
}
}
}
return -1;
}