贝叶斯方法与正则项

从贝叶斯角度,正则项等价于引入参数$w$的先验概率分布。常见的L1/L2正则,分别等价于引入先验信息:参数$w$符合均值为0的拉普拉斯分布/高斯分布。

2017-02-27 19:42:48

阅读数:608

评论数:0

机器学习的损失函数

机器学习的数学本质上是优化问题的求解,求解优化问题首先得构造相应优化问题的损失函数,本文将简要介绍squared loss、cross entropy、hinge loss、exponential loss损失函数。

2017-02-27 11:10:55

阅读数:1807

评论数:0

机器学习算法与技术简介

机器学习算法简介

2017-02-26 20:43:09

阅读数:505

评论数:0

机器学习算法调优

机器学习算法众多,各种算法又涉及较多参数,本文将简要介绍RF,GBDT等算法的调优经验与步骤。

2017-02-24 11:19:25

阅读数:2176

评论数:0

机器为什么可以学习

机器学习、人工智能炙手可热,但是机器到底为什么可以学习呢?本文将从霍夫丁不等式讲到VC维,探究机器学习的原因所在。

2017-02-21 16:02:43

阅读数:991

评论数:0

判别模型和生成模型

监督学习方法分为生成方法和判别方法,学习到的模型分为生成模型和判别模型。

2017-02-14 21:08:26

阅读数:332

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭