海光部署deepseek参考【待测试】

转自:https://www.sourcefind.cn/#/model-zoo/1885958664579317762,如有侵权请联系删除

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
模型结构
该模型基于Transformer,采用Multi-Head Latent Attention和DeepSeekMoE架构,其中MLA通过减少KV缓存降低内存占用可用于高效推理,DeepSeekMoE通过auxiliary loss平衡专家负载。

算法原理
DeepSeek-R1的模型结构通过MLA、DeepSeekMoE、辅助损失无关的负载均衡策略、多令牌预测和FP8混合精度训练等创新技术,显著提升了模型的性能和训练效率,使用强化学习训练模型,增强模型的思考能力,这些设计使得DeepSeek-R1在保持高性能的同时,大幅降低了训练成本。

环境配置
Docker(方法一)
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-ubuntu22.04-dtk24.04.3-py3.10

docker run --shm-size 500g --network=host --name=dpskr1 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it bash

cd inference
pip install -r requirements.txt
Dockerfile(方法二)
docker build -t <IMAGE_NAME>: .

docker run --shm-size 500g --network=host --name=dpskr1 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it bash

cd inference
pip install -r requirements.txt
数据集

训练

推理
注意:运行该模型需要4x8x64(GB)显存。

模型转换

fp8 -> bf16

cd inference
python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights

模型划分

python convert.py --hf-ckpt-path /path/to/DeepSeek-R1-bf16 --save-path /path/to/DeepSeek-R1-Demo --n-experts 256 --model-parallel 32
run

chat

torchrun --nnodes 4 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-R1-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200

直接推理

torchrun --nnodes 4 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-R1-Demo --config configs/config_671B.json --input-file $FILE
注意:需要将/path/to/fp8_weights中的json文件复制到/path/to/DeepSeek-V3-Demo中。
在K100_AI和ECO显卡上需要添加环境变量
export NCCL_ALGO=Ring
export NCCL_PROTO=Simple


我是海持,AI顶尖大厂攻城狮+创业者,为梦想窒息的老少年,追求自由、健身、智慧。
推荐云+AI头部大厂工作机会和指导面试(阿里、字节、华为、微软、大疆等);办理美港股开户;陪伴年轻人终身成长。
个税APP,航X、网X、军X 架构师
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海持Alvin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值