写在前面
由于本人实力尚浅,接触算法没多久,写这篇blog仅仅是想要提升自己对算法的理解,如果各位读者发现什么错误,恳请指正,希望和大家一起进步。(●’◡’●)
如果没看过我前面关于01背包问题(良心正解)和完全背包问题(良心正解)以及多重背包问题(超详细版)的宝宝可以先去看看,可以让你对动态规划的理解更透彻
DP核心思路
分组背包问题
题目
思路
重要变量说明
f[][[]
:用于状态表示;
w[][]
:记录每个物品的价值;
v[][]
:记录每个物品的体积;
- 定义二维数组
f[][]
,其中f[i][j]
表示在前i
个组的物品中,背包容积为j
的限制下所能装下的最大价值。这里的f[i][j]
就是做法的集合,f[i][j]
的值就是最大价值即属性。 - 从
i=1
开始枚举,对于第i
个组,都有一定数量的选择:- 不选择第
i
个组中所有物品,状态转移方程为f[i][j]=f[i-][j]
- 选择第
1
个组中的第一个物品,状态转移方程为f[i][j]=f[i-1][j-v[i][1]]+w[i][1]
- 选择第
2
个组中的第一个物品,状态转移方程为f[i][j]=f[i-1][j-v[i][2]]+w[i][2]
......
- 选择第
k
个物品(k
为第i
组中最后一个物品),状态转移方程为f[i][j]=f[i-1][j-v[i][k]]+w[i][k]
- 不选择第
- 我们因为要求最大价值,所以对上面两种情况去
max
即可。
代码(未优化,二维数组)
#include<iostream>
using namespace std;
const int N=110;
int v[N][N],w[N][N],cnt[N],f[N][N];
int main()
{
int n,m;
cin>>n>>m