动态规划——分组背包问题

本文介绍了如何使用动态规划解决分组背包问题,通过状态转移方程详细解释了二维数组的计算过程,并提供了空间复杂度优化的方法。作者鼓励读者先理解基础背包问题再学习这个高级版本。

写在前面

由于本人实力尚浅,接触算法没多久,写这篇blog仅仅是想要提升自己对算法的理解,如果各位读者发现什么错误,恳请指正,希望和大家一起进步。(●’◡’●)
如果没看过我前面关于01背包问题(良心正解)完全背包问题(良心正解)以及多重背包问题(超详细版)的宝宝可以先去看看,可以让你对动态规划的理解更透彻


DP核心思路

核心


分组背包问题

题目

题目


思路

重要变量说明
f[][[]:用于状态表示;
w[][]:记录每个物品的价值;
v[][]:记录每个物品的体积;

  1. 定义二维数组f[][],其中f[i][j]表示在前i个组的物品中,背包容积为j的限制下所能装下的最大价值。这里的f[i][j]就是做法的集合,f[i][j]的值就是最大价值即属性。
  2. i=1开始枚举,对于第i个组,都有一定数量的选择:
    • 不选择第i个组中所有物品,状态转移方程为f[i][j]=f[i-][j]
    • 选择第1个组中的第一个物品,状态转移方程为f[i][j]=f[i-1][j-v[i][1]]+w[i][1]
    • 选择第2个组中的第一个物品,状态转移方程为f[i][j]=f[i-1][j-v[i][2]]+w[i][2]
    • ......
    • 选择第k个物品(k为第i组中最后一个物品),状态转移方程为f[i][j]=f[i-1][j-v[i][k]]+w[i][k]
  3. 我们因为要求最大价值,所以对上面两种情况去max即可。

代码(未优化,二维数组)

#include<iostream>

using namespace std;
const int N=110;

int v[N][N],w[N][N],cnt[N],f[N][N];

int main()
{
   
   
    int n,m;
    cin>>n>>m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值