P2877 [USACO07JAN]Cow School G 斜率优化+分数规划

题意:

一个人参加了 n n n 场考试,第 i i i 场满分为 p i p_i pi,其得分为 t i t_i ti。现在要删去其中 d d d 次考试的成绩,用剩下的总得分除以剩下的满分之和,作为其最终成绩。问对于哪些 d d d 而言,删除得分比(即 t i p i \frac{t_i}{p_i} piti )最小的 d d d 场得到的最终成绩不是最优的

范围&性质: 1 ≤ n ≤ 5 × 1 0 4 , 1 ≤ p i , t i ≤ 4 × 1 0 4 1\le n\le 5\times 10^4,1\le p_i,t_i\le 4\times 10^4 1n5×104,1pi,ti4×104

分析:

首先这个式子长得很分数规划,但是按照正常分数规划的做法,复杂度是 O ( n 2 log ⁡ n ) O(n^2\log n) O(n2logn)的,直接去世

我们发现其实并不需要求出分数规划的答案,我们只需要知道选的数是不是最小的 d d d 个,那就按照正常分数规划的套路,求出所有的 t − r a t e × p t-rate\times p trate×p ,如果未选的最大值大于已选的最小值,那么该方案一定不是最优,所以问题就转化成了求前缀序列的最小值和后缀序列的最大值

由于 t − r a t e × p t-rate\times p trate×p 这种形式很斜率优化,且 r a t e rate rate 是单调的,能成为决策点的 p i p_i pi 也是单调的

  • 证明:

对于 t i − r a t e × p i < t j − r a t e × p j t_i-rate\times p_i<t_j-rate\times p_j tirate×pi<tjrate×pj i < j i<j i<j

由于 t i p i ≤ t j p j \frac{t_i}{p_i}\le \frac{t_j}{p_j} pitipjtj 所以当 p j > p i p_j>p_i pj>pi 时存在 t j − t i p j − p i > r a t e \frac{t_j-t_i}{p_j-p_i}>rate pjpitjti>rate j j j 可以成为决策点

然后我们就可以按照正常的斜率优化的做法解题,对于求已选的最小值可以用单调队列维护一个递增的序列,对于未选的最大值可以用单调栈维护递减的值

代码:

#include<bits/stdc++.h>

using namespace std;

namespace zzc
{
	inline int read()
	{
		int x=0,f=1;char ch=getchar();
		while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
		while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
		return x*f;
	}
	
	const int maxn = 5e4+5;
	int n,h,t,top,ans; 
	int q[maxn],sumt[maxn],sump[maxn],pos[maxn];
	double hig[maxn],low[maxn];
	
	struct node
	{
		int p,t;
		bool operator<(const node &b)const
		{
			return p*b.t<b.p*t;
		}
	}a[maxn];
	
	int up(int x,int y)
	{
		return (a[x].p-a[y].p);
	}
	
	int down(int x,int y)
	{
		return (a[x].t-a[y].t);
	}
	
	void work()
	{
		n=read();
		for(int i=1;i<=n;i++) a[i].t=read(),a[i].p=read();
		sort(a+1,a+n+1);
		for(int i=1;i<=n;i++) sumt[i]=sumt[i-1]+a[i].t,sump[i]=sump[i-1]+a[i].p;
		h=1;t=0;
		for(int i=1;i<=n;i++)
		{
			while(h<=t&&a[i].p>=a[q[t]].p) t--;
			while(h<t&&(long long)up(q[t-1],q[t])*down(q[t],i)>(long long)up(q[t],i)*down(q[t-1],q[t])) t--;
			q[++t]=i;
			while(h<t&&(long long)down(q[h],q[h+1])*sump[i]>(long long)up(q[h],q[h+1])*sumt[i]) h++;
			low[i]=a[q[h]].t-(double)sumt[i]/sump[i]*a[q[h]].p;
		}
		top=0;
		for(int i=n;i>=1;i--)
		{
			while(top&&a[i].p<=a[q[top]].p) top--;
			while(top>1&&(long long)down(i,q[top])*up(q[top],q[top-1])>(long long)up(i,q[top])*down(q[top],q[top-1])) top--;
			q[++top]=i;
			while(top>1&&(long long)down(q[top],q[top-1])*sump[i-1]<=(long long)up(q[top],q[top-1])*sumt[i-1]) top--;
			hig[i]=a[q[top]].t-(double)sumt[i-1]/sump[i-1]*a[q[top]].p;
		}
		for(int i=1;i<n;i++) if(hig[i+1]>low[i]) pos[++ans]=n-i;
		printf("%d\n",ans);
		for(int i=ans;i>=1;i--) printf("%d\n",pos[i]); 
	}

}

int main()
{
	zzc::work();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值