题意:
求 [ 1 , n ! ] [1,n!] [1,n!]范围内与 m ! m! m!互质的数的个数,多组数据,答案对 R R R取模
范围&性质: 1 ≤ m ≤ n ≤ 1 0 7 , 1 ≤ t ≤ 1 0 4 , R 1\le m\le n\le 10^7,1\le t\le 10^4,R 1≤m≤n≤107,1≤t≤104,R一定是质数
分析:
题目要求得到的其实就是
∑ i = 1 n ! [ g c d ( i , m ! ) = = 1 ] \sum_{i=1}^{n!}[gcd(i,m!)==1] i=1∑n![gcd(i,m!)==1]
由于 g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1可以推得 g c d ( x + k y , y ) = 1 gcd(x+ky,y)=1 gcd(x+ky,y)=1,并且题目保证 m ≤ n m\le n m≤n所以我们将 n ! n! n!按照大小为 m ! m! m!划分成若干段,然后变换求和上界
a n s = n ! m ! ∑ i = 1 m ! [ g c d ( i , m ! ) = = 1 ] ans= \frac{n!}{m!}\sum_{i=1}^{m!}[gcd(i,m!)==1] ans=m!n!i=1∑m![gcd(i,m!)==1]
我们发现后边的求和不就是欧拉函数吗?!!!再根据欧拉函数的定义式化简
a n s = n ! m ! × m ! ∏ i = 1 k p i − 1 p i = n ! × ∏ i = 1 k p i − 1 p i ans=\frac{n!}{m!}\times m!\prod_{i=1}^k \frac{p_i-1}{p_i}=n!\times \prod_{i=1}^k\frac{p_i-1}{p_i} ans=m!n!×m!i=1∏kpipi−1=n!×i=1∏kpipi−1
所以我们只要 O ( n ) O(n) O(n)的处理出阶乘和每一个数的 ∏ i = 1 k p i − 1 p i \prod_{i=1}^k\frac{p_i-1}{p_i} ∏i=1kpipi−1就可以了
代码:
#include<bits/stdc++.h>
using namespace std;
namespace zzc
{
const int maxn = 1e7+5;
long long p[maxn>>3],ans[maxn],fac[maxn],inv[maxn];
bool vis[maxn];
long long n,m,t,mod,cnt=0;
void init()
{
for(long long i=2;i<=10000000;i++)
{
if(!vis[i])
{
p[++cnt]=i;
}
for(long long j=1;j<=cnt&&i*p[j]<=10000000;j++)
{
vis[i*p[j]]=true;
if(i%p[j]==0) break;
}
}
fac[0]=fac[1]=1;
for(long long i=2;i<=10000000;i++)
{
fac[i]=fac[i-1]*i%mod;
}
inv[0]=inv[1]=1;
for(long long i=2;i<=10000000;i++)
{
inv[i]=inv[mod%i]*(mod-mod/i)%mod;
}
ans[0]=ans[1]=1;
for(long long i=2;i<=10000000;i++)
{
ans[i]=ans[i-1];
if(!vis[i]) ans[i]=ans[i]*(i-1)%mod*inv[i]%mod;
}
}
void work()
{
scanf("%lld%lld",&t,&mod);
init();
while(t--)
{
scanf("%lld%lld",&n,&m);
printf("%lld\n",fac[n]*ans[m]%mod);
}
}
}
int main()
{
zzc::work();
return 0;
}