Path Planning

        在很多现实应用中,离不开路径规划的身影。例如农业机器人自主作业、地面或者空中自动驾驶、行星和空间探索任务。

        Optimal path planning refers to find the collision free, shortest, and smooth route between start and goal positions.

        Considering different  applications and constraints of robots, optimal criteria could be based on one or more conditions such as shortest physical distance, smoothness, low risk, less fuel requirements, maximum area coverage, and low energy consumption.

        Hence, in perspective of path planning for mobile robots optimal path refers to find a feasible plan with optimized performance according to application specified criterion.Optimal path planning is  influenced by the holonomic  and non-holonomic constraints.Path planning algorithms are of vital importance for motion planning of mobile robots.

        Grid based algorithms such as Dijkstra , wavefront, A* , D* , and Phi*  are resolution-complete and are computationally expensive for high dimensional complex problems.

        Sampling Based Planning (SBP) approaches are the most influential advancement in path planning. Major advantages of Sampling Based Planning (SBP) are low computational cost, applicability to high dimensional problems and better success rate for complex problems. SBPs are robabilistic complete, i.e., it finds a solution, if one exists, provided with infinite run time . Most popular SBP algorithms are Probabilistic Roadmap (PRM) , Rapidly-exploring Random Tree (RRT)  and Rapidly-exploring Random Tree Star (RRT*) . PRM based methods are mostly used in highly structured static environment such as factory floors . They are well suited for holonomic robots but could be extended for non-holonomic as well. On the other hand RRT and RRT* based approaches naturally extend non-holonomic constraints  and support dynamic environment as well.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值