Optimal path planning refers to find the collision free, shortest, and smooth route between start and goal positions.
Considering different applications and constraints of robots, optimal criteria could be based on one or more conditions such as shortest physical distance, smoothness, low risk, less fuel requirements, maximum area coverage, and low energy consumption.
Hence, in perspective of path planning for mobile robots optimal path refers to find a feasible plan with optimized performance according to application specified criterion.Optimal path planning is influenced by the holonomic and non-holonomic constraints.Path planning algorithms are of vital importance for motion planning of mobile robots.
Grid based algorithms such as Dijkstra , wavefront, A* , D* , and Phi* are resolution-complete and are computationally expensive for high dimensional complex problems.
Sampling Based Planning (SBP) approaches are the most influential advancement in path planning. Major advantages of Sampling Based Planning (SBP) are low computational cost, applicability to high dimensional problems and better success rate for complex problems. SBPs are robabilistic complete, i.e., it finds a solution, if one exists, provided with infinite run time . Most popular SBP algorithms are Probabilistic Roadmap (PRM) , Rapidly-exploring Random Tree (RRT) and Rapidly-exploring Random Tree Star (RRT*) . PRM based methods are mostly used in highly structured static environment such as factory floors . They are well suited for holonomic robots but could be extended for non-holonomic as well. On the other hand RRT and RRT* based approaches naturally extend non-holonomic constraints and support dynamic environment as well.