Path Planning

        在很多现实应用中,离不开路径规划的身影。例如农业机器人自主作业、地面或者空中自动驾驶、行星和空间探索任务。

        Optimal path planning refers to find the collision free, shortest, and smooth route between start and goal positions.

        Considering different  applications and constraints of robots, optimal criteria could be based on one or more conditions such as shortest physical distance, smoothness, low risk, less fuel requirements, maximum area coverage, and low energy consumption.

        Hence, in perspective of path planning for mobile robots optimal path refers to find a feasible plan with optimized performance according to application specified criterion.Optimal path planning is  influenced by the holonomic  and non-holonomic constraints.Path planning algorithms are of vital importance for motion planning of mobile robots.

        Grid based algorithms such as Dijkstra , wavefront, A* , D* , and Phi*  are resolution-complete and are computationally expensive for high dimensional complex problems.

        Sampling Based Planning (SBP) approaches are the most influential advancement in path planning. Major advantages of Sampling Based Planning (SBP) are low computational cost, applicability to high dimensional problems and better success rate for complex problems. SBPs are robabilistic complete, i.e., it finds a solution, if one exists, provided with infinite run time . Most popular SBP algorithms are Probabilistic Roadmap (PRM) , Rapidly-exploring Random Tree (RRT)  and Rapidly-exploring Random Tree Star (RRT*) . PRM based methods are mostly used in highly structured static environment such as factory floors . They are well suited for holonomic robots but could be extended for non-holonomic as well. On the other hand RRT and RRT* based approaches naturally extend non-holonomic constraints  and support dynamic environment as well.

### 路径规划算法的概念与实现 路径规划(Path Planning)是指通过计算技术,在给定环境中找到一条从起点到目标点的安全可行路径。路径规划通常分为全局路径规划和局部路径规划两种形式。 #### 全局路径规划 全局路径规划是在已知环境地图的情况下,寻找最优或次优路径的过程。一种常用的全局路径规划算法是基于图搜索的方法,例如A*算法[^1]。该算法利用启发函数来评估节点的优先级,从而有效地减少搜索空间并提高效率。伪代码如下所示: ```python function A_star(start, goal): open_set = {start} g_score[start] = 0 f_score[start] = heuristic_cost_estimate(start, goal) while open_set is not empty: current = node in open_set with lowest f_score[] if current == goal: return reconstruct_path(came_from, current) remove current from open_set for each neighbor of current: tentative_g_score = g_score[current] + dist_between(current, neighbor) if tentative_g_score < g_score[neighbor]: came_from[neighbor] = current g_score[neighbor] = tentative_g_score f_score[neighbor] = g_score[neighbor] + heuristic_cost_estimate(neighbor, goal) if neighbor not in open_set: add neighbor to open_set return failure ``` 上述代码展示了如何通过维护开放集合`open_set`以及记录代价分数`g_score`和总估计成本`f_score`来进行路径搜索[^2]。 #### 局部路径规划 局部路径规划则侧重于实时避障能力,适用于动态变化的场景。对于无人车而言,局部路径规划可能涉及多项式轨迹生成方法[^4],或者采用时间弹性带(TEB)优化器进行平滑处理[^5]。例如,在平行泊车过程中加入两条蓝色直线用于调整车辆姿态前后的方向一致性,其对应的ROS命令可以通过以下方式启动: ```bash roslaunch teb_local_planner geometric.launch ``` 此命令会加载配置文件并初始化本地规划器插件,最终呈现出经过修正的停车路径效果。 #### 实现中的注意事项 在实际开发中需要注意的是,无论是哪种类型的路径规划都需要考虑具体应用场景下的约束条件,比如障碍物检测精度、传感器数据融合质量等因素都会影响最终结果的好坏程度。此外还需兼顾计算资源消耗情况以满足实时性需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值