Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
思路:先确定一个数字,后两个数字用夹逼方式来扫描实现。通过判断并去重
class Solution {
public:
vector<vector<int> > threeSum(vector<int> &num) {
vector<vector<int> > result;
if(num.size() < 3)
return result;
sort(num.begin(), num.end());
const int target = 0;
int a,b,c;
int last_index = num.size() - 2;
for(a = 0; a < last_index; ++a)
{
b = a + 1;
c = num.size() - 1;
if((a != 0)&&(num[a-1] == num[a]))//去重
continue;
while(b < c)
{
if((num[a] + num[b] + num[c]) < target)
++b;
else if((num[a] + num[b] + num[c]) > target)
--c;
else{
if((b != (a+1))&&(num[b-1] == num[b])){
++b;
continue;
}
if((c != (num.size()-1))&&(num[c] == num[c+1])){ //去重
--c;
continue;
}
result.push_back({num[a], num[b], num[c]});
++b;
--c;
}
}
}
return result;
}
};